Review of the Fused Technology of Sensing, Storage and Computing Based on Memristor
-
摘要: 忆阻器的低功耗、高响应、纳米级、非易失性等特性,在实现非冯·诺依曼计算架构中展现出巨大潜力。基于忆阻器的高密度横梁阵列可实现数据存储及并行计算一体的逻辑电路和类脑计算电路。此外,纳米传感器与忆阻器进一步集成,采集的信号直接送往忆阻器阵列进行运算和存储,感知、存储与计算一体化的芯片技术成为新的研究热点。该文对基于忆阻器的存算一体技术、感存算一体技术的研究现状进行综述,并给出研究前景展望。
-
关键词:
- 忆阻器 /
- 感存算一体 /
- 非冯·诺依曼计算架构
Abstract: Because of its low power consumption, high response, nanometer level, non-volatility and other characteristics, the memristor shows great development potential in the realization of non-von Neumann computing architecture. The high-density cross-array structure based on memristors can build logic circuits and brain-like computing circuits integrating data storage and parallel computing. In addition, the nanosensor and the memristor are further integrated, and the collected signals are calculated and stored in the memristor array. The chip technology integrating sensing, storage and computing become a new research focus. The research on the memristor-based storage-calculation integrated technology and sense-storage-calculated integrated technology are reviewed in this summary paper, and outding prospect of the research prospects are given. -
1. 引言
冯·诺依曼计算架构为计算机提供了理论指导,二进制编码、顺序执行等优势使其成为计算机领域主导。然而随着人工智能时代的到来,巨量数据的深度处理和存储要求更高的运算速度和更低的能耗。计算和存储单元的相互分离引起速度瓶颈与功耗浪费,传统计算机架构无法满足目标检测、情感理解等需要。因此新型计算存储一体化技术成为研究的重要方向。
忆阻器[1]是一种新型纳米器件,阻值与流经的电荷相关且具有非易失性。忆阻器研究涉及微电子、材料学、凝聚态物理、人工智能等学科领域,应用涵盖信息存储[2,3]、非易失逻辑[4,5]、非线性动力学[6,7]、混沌电路[8-10]、忆阻神经网络[11-13]、神经元模型[14,15]等众多方向,并由此实现仿生神经元、长短期记忆、联想学习等认知功能。此外,凭借高密度、低延迟、非易失性等特性,忆阻器成为存算一体技术的重要研究方向,同时也为感存算一体技术提供了可靠的解决方案。
忆阻器存算一体技术[16]常以大规模交叉阵列为基础,参加计算的电导直接存储在阵列中。随着半导体工艺的快速发展,纳米传感器同忆阻器集成,感知、存储和运算进一步融合,传感器感知的模拟信号直接经过忆阻器阵列运算和存储,减少数据交换。
从基于忆阻器的存算一体技术和感存算一体技术两方面综述了该领域的主要研究方向、研究进展、存在的问题,分析该领域发展规律并提出思考。
2. 忆阻器存算一体技术
忆阻器存算一体架构[17]提出后,引起研究人员的广泛关注。按照计算方式忆阻器存算一体技术可归结为以下两种类别。
2.1 存算一体的逻辑电路
存算一体逻辑电路包含忆阻器实质蕴含逻辑[18](material IMPlication logic, IMP)和忆阻器辅助逻辑[19](Memristor-Aided loGIC, MAGIC),以电阻状态为参量,基于阻值转变实现逻辑运算并将结果直接存储为阻值。
如图1(a)所示,两个并联的忆阻器串联接地电阻构成基本IMP逻辑单元。Vset是忆阻器置逻辑1的负电压,Vclear是忆阻器置逻辑0的正电压。Vclose是阻值转变阈值电压,Vcond是不改变阻值的负电压。IMP的操作步骤如下:(1)通过对忆阻器P和Q施加Vset或者Vclear将整个逻辑单元初始化;(2)对忆阻器P和Q的正端分别施加大小为Vcond和Vset的电压;(3)根据电路分压原理,操作结果存储为忆阻器Q的阻值。如图1(b)所示,两忆阻器正端相连构成辅助逻辑非门。操作步骤如下:(1)将忆阻器M2设定初始状态;(2)整体施加V0的电压(V0>Vclear>=V0/2),结果存储为M2阻态。
根据IMP和MAGIC设计方法,研究人员先后设计了全加器[20]、可重构逻辑门[21]等基础逻辑组件。2015年,Li等人[22]采用忆阻器阵列作为核心模块,完成并行计算、学习、记忆以及逻辑功能。2017年,Cheng等人[23]基于IMP设计方法完成可重复编程的逻辑电路,在2×4阵列中完成1位全加器,为开发大规模非易失性内存计算体系提供重要基础。
当前的研究焦点主要集中在先进算法的改进和整体结构的优化等方面。2019年,Karimi等人[24]提出有效的忆阻多路复用器,用来实现高性能数字逻辑电路。并基于IMP逻辑运算提出了3种新算法和结构,与之前的多路复用器相比,该方法可以将输出存储在忆阻器内,并在减少操作步骤、提高复用器速度、减少布局面积等方面具有优势。2020年,Ben-Hur等人[25]提出称为单行逻辑执行的综合和内存中映射(Synthesis and In-memory MaPping of Logic Execution in a single Row, SIMPLER)的自动合成流程,用于优化内存单指令多数据流(Single Instruction Multiple Data, SIMD)吞吐量。通过重用逻辑单元以节省面积并允许实例同时执行,利用启发式算法快速生成针对巨大基准的优化映射,为设计高效忆阻器存算单元提供参考。
除上述研究成果外,众多优秀团队同样推动了忆阻器存算一体的高水平发展。Liu等人[26]通过忆阻器阵列的超高效混合信号计算能力加速神经网络。Halawani等人[27]提出可重配置的通用单阵列架构,实现正负电导的乘加运算。Zhang等人[28]提出一种解决数据密集型应用程序的新型混合计算架构。Alam等人[29]开发出使用忆阻器辅助逻辑的随机计算内存乘法器。Kolms等人[30]基于微控制器完成忆阻器模拟计算的原型实现及零值表示。Zanotti等人[31]基于3种忆阻器技术校准的物理紧凑模型分析出智能可重构内存逻辑相比传统架构平均节省40%以上的高压脉冲。Cheng等人[32]完成低功耗边缘内存计算的非易失性布尔逻辑和算术单元设计。Dai等人[33]基于电阻随机存取存储器的多级单元乘法器的内存计算方法提出查找表操作,以优化乘法器电路的速度、面积和功率。Zhou等人[34]首次提出3端单忆阻单电阻结构的非易失性数字逻辑系统并进行功能验证。Halawani等人[35]对搜索引擎和特征提取架构进行仿真并在单周期内产生多输出特征图。
2.2 存算一体的类脑电路
忆阻器构建的多种神经网络,例如Hopfield神经网络(Hopfiled Neural Network, HNN)、脉冲神经网络(Spiking Neuron Networks, SNN)、卷积神经网络(Convolutional Neural Network, CNN)是低功耗类脑计算的重要基础。
为探究实际电路,2015年,Chu等人[36]搭建了图2(a)所示的HNN系统,捕获的图像经过处理单元转换为神经信号,然后根据时序相依可塑性学习规则对阵列权重进行调整,再利用输出神经元输出训练和测试信号,在5×6大小图像中实现数字0~9高达95%的识别精度,为忆阻器类脑计算的电路设计提供了工程化参考。
小规模忆阻器阵列的实现证明忆阻器在存算一体的类脑电路中具有低功耗、高效率等优势。2018年,Li等人[37]在如图2(b)的1晶体管–1电阻(One-Transistor/One-Resistor, 1T-1R)阵列上成功构建完整的两层感知器,加入可靠的双脉冲电导编程不断适应和更新权值,实现网络的在线快速训练,对手写数字的识别准确率高达91.71%。
SNN神经元模型是类脑神经信号处理、突触可塑性和联合学习的重要工具。2020年,Duan等人[38]搭建了一个基于忆阻器的脉冲神经网络,可以实现全有或全无、脉冲求和、动态逻辑和增益调制等功能,在图2(c)所示的单片集成4×4阵列中进行快速高效的模式识别和在线监督学习,利用人工神经元的乘法增益调制实现重新映射,增强了人工视觉系统的稳定性。为神经计算的硬件实现提供一条节能、高度生物化的途径。
最近,清华大学Yao等人[39]在2020年《Nature》发文,首次成功实现完全基于忆阻器的CNN网络硬件电路。如图2(d)所示,一共集成8块包含2048个单元的忆阻器阵列,有效提升并行计算效率。此外,还提出一种高效混合训练方法,以适应设备缺陷,改进整个系统性能。相较于当前最优的图形处理器能效高出一个数量级,且可扩展至大型网络。
此外,众多研究团队也取得了令人鼓舞的研究进展。Balaji等人[40]将SNN映射到交叉阵列,最大限度减少尖峰延迟和能耗。Tan等人[41]采用忆阻器的氧空位传输隧道结模拟生物突触的神经传递过程。Wijesinghe等人[42]利用忆阻器固有随机性模拟尖峰神经元功能,并将其掺入深度随机尖峰神经网络中。Zhang等人[43]提出一种多层神经网络新型电路并将自适应反向传播算法用于训练神经网络、异或逻辑和字符识别。Zhao等人[44]制备出良好柔韧性和稳定性的新型忆阻器,刺激突触行为的脉冲周期胜过基准忆阻器。Greenberg-Toledo等人[45]提出支持常用动量算法的忆阻器突触,显着改善收敛性。Sun等人[46]提出忆阻器级联框架,通过级联多个神经网络处理单元提高数据处理能力。Hu等人[47]实现了全光控模拟忆阻器,其忆阻通过改变控制光的波长即可在连续范围内可逆调节,多介导状态可模拟依赖尖峰时序的可塑性。Li等人[48]制备了一种用于智能神经形态系统的可重构神经元,利用两种不同电解质、铜离子迁移率的异质双层导电丝状忆阻器实现可控的记忆和突触行为。Bae等人[49]将随机行为植入权重更新信号,提出一种忆阻神经网络可编程随机权重生成方法。
3. 感存算一体技术
忆阻器结合微纳传感器工艺构建感知、存储、计算一体的相关技术成为人工智能新的研究方向。目前忆阻器感存算一体技术大致划分为触觉、视觉、嗅觉、听觉等类别,3维集成工艺也是感存算技术的重要研究方向。
3.1 触觉感存算一体技术
触觉仿生皮肤由压力感受器实时感知压力空间分布,并将压力数据存储在外部存储器中以操纵分配的识别和智能任务。具有存算单元的压力感觉神经元不仅可以检测外部刺激信号,还可在模拟的大脑皮层中存储复杂信号并进行预处理。
触觉记忆单元是触觉感存算技术的基础,2016年,Zhu等人[50]引入存储单元阵列记录压力分布,利用分压原理存储触觉信号成功实现触觉存储。为实现触觉识别,2019年,Zhang等人[51]将两端压阻传感器与基于电解质的忆阻器进行集成,搭建一个如图3(a)所示的触觉神经元系统,使用微金字塔结构制作压阻式压力传感器感知静态压力和动态压力,基于电解质忆阻器模拟基本突触功能。将触觉感知系统组装在智能笔的底部,用来识别英文字符。采用定制笔触对单字符收集20组数据,10次训练后的字符识别精度为91.7%。
为提升触觉感知阵列大小以及多感知能力,2020年,Jiang等人[52]将设计良好的压电有机发光二极管阵列覆盖在压电忆阻器阵列上,制造出图3(b)所示的双激发矩阵,将压力传感、记忆功能和实时照片生成功能集成在一个系统中,在15×15大小的触觉感知矩阵上完成了对字母“N”“P”以及五角星、钻石、眼睛等特殊图形的感知、记忆以及实时处理。
生物的某些触觉系统不仅完成对触觉的感知、存储和处理,更会对外界的相关刺激进行快速回应。2020年,He等人[53]首次使用3个柔性电子元件分别作为压力传感器、阈值控制单元(Threshold Controlling Unit, TCU)和电化学致动器,构建了图3(c)所示的完整的人工反射弧。整个系统构建在柔性的聚二甲基硅氧烷(PolyDiMethylSiloxane, PDMS)弹性膜上,使用可拉伸金膜作为导电层,利用涂有碳纳米管的PDMS薄膜电阻式压力传感器模拟皮肤,金属有机框架忆阻器构成TCU,多壁碳纳米管电化学执行器模拟肌肉。
迄今为止,数千优秀成果促进了触觉感存算技术的高速发展。Liu等人[54]开发出一种双极开关行为电阻型非易失性存储器件。Sun等人[55]将仿生电子皮肤和忆阻器耦合以模仿人类感觉记忆,开发出一种高响应、自供电人工触觉记忆系统。Wang等人[56]提出一种基于皮肤感觉处理器的情绪生成和演化的忆阻电路。Wan等人[57]开发了一种光学和压力双峰感觉神经元实现双感觉融合,通过模拟多透明模式实现融合视触觉的增强识别。Rahman等人[58]将可拉伸压力传感器、相变氧化物薄膜和忆阻器存储元件组合,实时检测并响应压力和温度,对疼痛刺激具有真实阈值特征。Liu等人[59]通过耦合竹状氮化镓引入压电效应,通过机械变形的感应电压进行调制。Kim等人[60]结合阻变压力传感器、环形振荡器和离子凝胶门控晶体管构造人工机械感受器,将压力输入转换为电刺激信号并以振荡方式驱动蟑螂腿运动。
3.2 视觉感存算一体技术
人类视觉感知系统收集信息后经过简单预处理并发送至大脑皮层进行深度识别,处理后的图像信息根据重要度进行短期或长期存储。传统视觉感知将图像感知、处理、存储相分割,产生的冗余数据大大降低感知速度。受人类视觉系统和忆阻器突触功能的启发,研究人员将光学感知器和忆阻器进行集成,为光学学习、存储、计算和识别融合发展提供了一种新思路。
在视觉感存算技术的发展历程中,大量研究人员投入到光学忆阻材料、器件、阵列等方面。2013年,Emboras等人[61]实现了忆阻器高低阻转变过程中光信号在波导中传输的改变。2015年,Tan等人[62]制造出一种电脉冲擦除的新型光耦合器件,对于不同光照强度和光照时间呈现不同的光电响应,可通过光照进行准确的信息写入。
2018年,Seo等人[63]制备了同时实现突触和光学传感功能的视神经突触设备。如图4(a)所示,实现了对彩色和混色光学信息的感知、存储以及简单的预处理功能。人工视觉细胞包括3种神经元,神经元为28×28阵列。利用该视神经突触设备搭建了一个光学神经网络,不仅减少了外围电路的复杂度,而且在训练次数饱和后对彩色和混合图像的识别精度超过90%,是传统神经网络的两倍多。
双端光学忆阻器的诞生对于提高系统集成度有着重要意义。2019年,Zhou等人[64]制备了如图4(b)的光电阻存储器,该器件同时具备非易失性可切换电阻和光调谐特性。光电突触将光刺激转换为电导状态临时存储,较高的光强下,尖峰电流和保留时间增加更快,对应像素积累效果越强。其生物感知方式、预处理结构等为简化电路提供可靠方向。
透明、柔性的人工视觉器件使构建高仿真生物突触成为可能。2020年,Yang等人[65]在3类基底上实现了高度透明的人工突触,通过钙钛矿界面中的载流子俘获和释放实现了对紫外光和深红色光双模操作,在识别和记忆的基础上完成了对于不同刺激的短期记忆和长期记忆,实验结果如图4(c)所示。这种多功能突触为光学多级数据存储、模式识别和生物启发的智能人工视觉设备开辟了一个透明柔性的钙钛矿人工突触新时代。
Lorenzi等人[66]使用250个忆阻器突触单元网络成功识别5像素×5像素的二进制图像。Sarkar等人[67]提出一种生物启发神经形态电路系统,开发出10种模式用于训练和测试,成功识别0~9的数字图像。Ascoli等人[68]提出用于集成高分辨率视觉传感器阵列的内存计算范例,在同一物理位置处理信息和存储数据以增强蜂窝非线性网络的性能。Dong等人[69]提出多突触电路和单激活单元合成的神经元电路,用于实现单图像超分辨率重建。Halawani等人[70]提出一种利用有损2维离散小波变换的图像压缩架构,包含中间存储器阵列和原始图像压缩存储器。Wu等人[71]通过协同光学预处理单元和增强神经网络,在不同的光噪声下完成自适应模式识别任务。Lin等人[72]成功开发出一种模数混合忆阻器,用于图像模式识别中准确度和速度的调节。Sun等人[73]对2维无铅钙钛矿的光刺激突触可塑性进行总结,证明其满足神经形态计算所需的复杂性和自由度。Yang等人[74]利用石墨烯杂化结构的双向光诱导响应完成光探测器、光刺激突触以及全光调制的数字逻辑电路。Wang等人[75]开发出超灵敏人工视觉阵列实现预处理并降噪,完成超低功耗弱光检测、图像感应和存储、视觉识别等功能。Hsu等人[76]通过优化非挥发性钙钛矿基光忆阻器的厚度,完成集成红光激发的传感、存储和信号处理功能的模拟光子突触。Zhang等人[77]利用光电探测器复合忆阻器完成可控光调制突触记忆行为,实现视觉记忆仿真并建立视觉存储阵列以完成图案化光分布的检测和存储过程。Dong等人[78]提出一种新型阵列及外围电路,构造一个通用链接系数应用于多焦点图像融合问题。
3.3 嗅觉感存算一体技术
嗅觉感存算技术起步较晚、应用范围小且识别精度较差,目前的研究热点集中在纳米气体传感器材料、瞬态响应以及感测精度等基础研究方面。
2015年,Nyenke等人[79]设计、制造并测试了3种忆阻器对于氧气的感知能力,通过忆阻器的记忆能力实现被动传感器,但整个系统感知周期长、感测精度低且感知气体单一、应用面较窄。2017年,Shulaker等人[80]成功构建了碳纳米管场效应晶体管(Carbon-Nanotube Field-Effect Transistor, CNFET)、阻变存储器(Resistive Random-Access Memory, RRAM)、硅基晶体管相叠加的嗅觉感存算芯片,实验验证了对于7种环境气体的感知、存储以及在线识别功能,结果如图5所示。顶层气体传感器在感知气体后产生输出电压,输出电压直接写入下一层RRAM存储阵列,CNFET存储器按顺序打开并读取,分类加速器将图案与先前学习的图案进行匹配计数,计数超过设定预设阈值时输出识别结果。整个系统响应速度快、感知气体种类丰富,但在识别相似气体时,例如白酒、酒精、伏特加等响应差距较小,需要额外的放大电路才足以进行分类,增加了结构复杂度。
2019年,Iwata等人[81]提出一种新的气体传感器输出处理技术。对嗅觉传感器阵列的瞬态响应进行提取后,存储为忆阻器电阻来进行气体判别。施加对应脉冲到忆阻器,成功区分丙酮和乙醇两种测试气体。这种瞬态嗅觉处理技术操作简单、响应较快,并且对于相似气体具备较好的区别度,是未来新型嗅觉感存算技术的重要参考。
除此,Adeyemo等人[82]使用惠普(Hewlett-Packard, HP)忆阻器模型将忆阻器交叉阵列用作气体传感器以提高感测精度,并提供良好的冗余措施。Khandelwal等人[83]开发出一种可模拟故障的气体传感忆阻器模型,进行仿真并与自动化设计工具集成。Wen等人[84]使用热线电阻、忆阻器、反馈补偿网络和基本电路组件构建一种新型气体累积流量传感器,将忆阻器与管道横截面积相结合来测量气体积累量。Vidis等人[85]合并类似电容器结构的气体检测和电阻开关功能,可用作气体触发的可控硅开关和内置存储器的气体传感器。
3.4 听觉感存算一体技术
现有机器听觉通过大数据的整合处理,实现语言翻译、语意理解、歌曲识别等功能。将忆阻系统用于听觉信号处理的研究尚处于初期阶段,声波的多尺度、时间依赖性、独特时空编码等特点使得构建听觉感存算一体技术富有挑战。
2013年,Shah等人[86]将忆阻交叉开关存储器与助听器的超低功率亚阈值有限脉冲响应滤波器组连接,在0.8V电压下最大限度节省功率。Saleh等人[87]提出了一种适用于语言情感识别的低功耗可拓展计算硬件架构,利用忆阻性突触完成两种不同的拓扑对应两种不同情绪状态。Rafique等人[88]提出一种用于语音识别的双记忆突触的多层神经网络,通过生物学的方式学习可塑性。对美国常用元音进行实验,证明该体系结构的有效性。
人脑实现声音定位的两种主要工作机制包括耳间时差(Interaural Time Difference, ITD)和耳间水平差(Interaural Level Difference, ILD),2018年,Wang等人[89]利用1T-1R突触设计了感知时空信息的SNN,利用ITD计算声音位置。如图6(a)所示,两个突触前神经元(分别代表左耳和右耳)被用作输入端口,两个突触后神经元被设计为产生输出内部电压信号。通过测量两个突触后神经元内部电位之间的差异,可以精确识别发声源的方位。
2018年,Sun等人[90]开创性地利用忆阻器的短期可塑性实现精确的时间计算,利用抑制声音强度、频率相关的突触连接对时间差进行低功耗检测,电路结构如图6(b),从而实现对声音的定位。实验证明忆阻突触在抑制ILD干扰的情况下只对宽频率、高音强范围编码ITD信息。
3.5 感存算片上集成技术
传统感存算电路的单层2维架构浪费了芯片面积,而将感知、存储、计算垂直叠加、分层制造的片上集成技术对于未来高性能、低能耗的感存算系统至关重要。
2017年,Li等人[91]构建如图7(a)所示最高支持5层的3维忆阻器阵列,自整流和单极电阻切换行为可抑制层间潜在电流。同年,Shulaker等人[80]实现改进器件的集成架构,百万级忆阻器存储单元和碳纳米晶体管制造在垂直堆叠层上。如图7(b)所示,计算层、数据存储层以及传感层之间具有密集的垂直连接,纳米系统每秒捕获大量数据直接存储在芯片上,并产生高度处理的信息。
单片3维集成[92]和新型纳米技术在3D架构中的使用使低功耗逻辑和高密度数据存储成为可能。忆阻器阵列的3D堆叠层数是感存算片上集成的关键。2020年,Lin等人[93]成功构建如图7(c)所示的8层忆阻器阵列,并且实现了CNN。垂直连接的输入输出电极使直接映射和复杂计算电路成为可能,忆阻3D结构与其他功能模块的异构集成将更好地利用这一独特的单片集成技术,为脑启发式计算在新兴硬件架构中开辟新的机会。
最近Wang等人[94]通过低温原子层沉积技术成功制备了图7(d)的3层柔性忆阻器阵列,除了高密度二进制存储功能,还可以实现单器件的多位存储,为提高神经计算具有重要意义。相较于固态片上架构,柔性设备优秀的延展性和3维堆叠为未来高密度、高性能的可穿戴感存算一体芯片提供了可能。
An等人[95]结合单片3D集成和垂直电阻随机存储器完成神经形态计算系统的硬件实现。Sun等人[96]使用3D结构的忆阻器突触实现多层神经网络芯片,提出一种新型针对机器学习权重变化的优化方法。Fernando等人[97]提出3D忆阻器的多核体系结构,用于实现多种深度学习应用程序。
4. 展望
综合上述对忆阻器感存算一体技术研究现状的分析,对未来忆阻器感存算一体技术做出以下3点展望:
(1)基于忆阻器的存算一体逻辑电路:目前工作主要集中在小规模阵列的基本逻辑操作以及算法、操作流程的优化等方面,基于忆阻器的存算融合架构研究进展不多。未来在大规模忆阻阵列的逻辑实现、新型存算一体架构、存算一体逻辑电路的工程验证等方面将是研究热点。
(2)基于忆阻器的存算一体类脑电路:忆阻器阵列在神经网络硬件加速方面取得了一定成果,但目前的类脑电路集成度不高,缺乏统一的操作架构。未来在忆阻类脑芯片、可重构类脑电路以及系统级的电路等方面需要继续深入研究。
(3)基于忆阻器的感存算一体技术:忆阻器感存算一体技术起步较晚,目前的应用主要集中在触觉、视觉感存算一体方面,处理数据量级较低、工作任务较为简单。自2019年,多种感存算一体技术的原型芯片逐渐展现,未来嗅觉、听觉等生物感存算技术将成为重要研究方向。Wang等人[94]制备的柔性忆阻材料和新型纳米技术、多感知器件以及感存算片上集成技术将是未来可穿戴感存算设备以及感存算芯片大规模集成的重要基础。
-
[1] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337 [2] LI Can, GRAVES C E, SHENG Xia, et al. Analog content-addressable memories with memristors[J]. Nature Communications, 2020, 11(1): 1638. doi: 0.1038/s41467-020-15254-4 [3] CAO Qiang, LÜ Weiming, WANG Renshaw, et al. Nonvolatile multistates memories for high-density data storage[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42449–42471. doi: 10.1021/acsami.0c10184 [4] ALI K A, RIZK M, BAGHDADI A, et al. Crossbar memory architecture performing memristor overwrite logic[C]. 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 2019: 723–726. doi: 10.1109/ICECS46596.2019.8964910. [5] LUO Li, DONG Zhekang, DUAN Shukai, et al. Memristor-based stateful logic gates for multi-functional logic circuit[J]. IET Circuits, Devices & Systems, 2020, 14(6): 811–818. doi: 10.1049/iet-cds.2019.0422 [6] ASCOLI A, SLESAZECK S, MÄHNE H, et al. Nonlinear dynamics of a locally-active memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(4): 1165–1174. doi: 10.1109/TCSI.2015.2413152 [7] CORINTO F and FORTI M. Nonlinear dynamics of memristor oscillators via the flux-charge analysis method[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017. doi: 10.1109/ISCAS.2017.8050989. [8] WU Renping and WANG Chunhua. A new simple chaotic circuit based on memristor[J]. International Journal of Bifurcation and Chaos, 2016, 26(9): 1650145. doi: 10.1142/S0218127416501455 [9] WANG Chunhua, XIA Hu, and ZHOU Ling. A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers[J]. International Journal of Bifurcation and Chaos, 2017, 27(6): 1750091. doi: 10.1142/s0218127417500912 [10] ZHU Minghao, WANG Chunhua, DENG Quanli, et al. Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit[J]. International Journal of Bifurcation and Chaos, 2020, 30(13): 2050184. doi: 10.1142/S0218127420501849 [11] ZHOU Chao, WANG Chunhua, SUN Yichuang, et al. Weighted sum synchronization of memristive coupled neural networks[J]. Neurocomputing, 2020, 403: 211–233. doi: 10.1016/j.neucom.2020.04.087 [12] YAO Wei, WANG Chunhua, SUN Yichuang, et al. Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations[J]. Applied Mathematics and Computation, 2020, 386: 125483. doi: 10.1016/j.amc.2020.125483 [13] LIN Hairong, WANG Chunhua, HONG Qinghui, et al. A multi-stable memristor and its application in a neural network[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 3472–3476. doi: 10.1109/TCSII.2020.3000492 [14] LIN Hairong, WANG Chunhua, SUN Yichuang, et al. Firing multistability in a locally active memristive neuron model[J]. Nonlinear Dynamics, 2020, 100(4): 3667–3683. doi: 10.1007/s11071-020-05687-3 [15] LIN Hairong, WANG Chunhua, and TAN Yumei. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation[J]. Nonlinear Dynamics, 2020, 99(4): 2369–2386. doi: 10.1007/s11071-019-05408-5 [16] IELMINI D and WONG H S P. In-memory computing with resistive switching devices[J]. Nature Electronics, 2018, 1(6): 333–343. doi: 10.1038/s41928-018-0092-2 [17] CHI Ping, LI Shuangchen, XU Cong, et al. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory[C]. 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 2016: 27–39. doi: 10.1109/ISCA.2016.13. [18] BORGHETTI J, SNIDER G S, KUEKES P J, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication[J]. Nature, 2010, 464(7290): 873–876. doi: 10.1038/nature08940 [19] KVATINSKY S, BELOUSOV D, LIMAN S, et al. MAGIC—memristor-aided logic[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(11): 895–899. doi: 10.1109/TCSII.2014.2357292 [20] ALAMGIR Z, BECKMANN K, CADY N, et al. Flow-based computing on nanoscale crossbars: Design and implementation of full adders[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 1870–1873. [21] TALATI N, GUPTA S, MANE P, et al. Logic design within memristive memories using memristor-aided loGIC (MAGIC)[J]. IEEE Transactions on Nanotechnology, 2016, 15(4): 635–650. doi: 10.1109/TNANO.2016.2570248 [22] LI H, GAO B, CHEN Z, et al. A learnable parallel processing architecture towards unity of memory and computing[J]. Scientific Reports, 2015, 5: 13330. doi: 10.1038/srep13330 [23] CHENG Long, ZHANG Meiyun, LI Yi, et al. Reprogrammable logic in memristive crossbar for in-memory computing[J]. Journal of Physics D: Applied Physics, 2017, 50(50): 505102. doi: 10.1088/1361-6463/aa9646 [24] KARIMI A and REZAI A. High-performance digital logic implementation approach using novel Memristor-based multiplexer[J]. International Journal of Circuit Theory and Applications, 2019, 47(12): 1933–1947. doi: 10.1002/cta.2712 [25] BEN-HUR R, RONEN R, HAJ-ALI A, et al. SIMPLER MAGIC: Synthesis and mapping of in-memory logic executed in a single row to improve throughput[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(10): 2434–2447. doi: 10.1109/TCAD.2019.2931188 [26] LIU Xiaoxiao, MAO Mengjie, LIU Beiye, et al. Harmonica: A framework of heterogeneous computing systems with memristor-based neuromorphic computing accelerators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(5): 617–628. doi: 10.1109/TCSI.2016.2529279 [27] HALAWANI Y, MOHAMMAD B, Al-QUTAYRI M, et al. A re-configurable memristor array structure for in-memory computing applications[C]. 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 2018: 160–163. doi: 10.1109/ICM.2018.8704111. [28] ZHANG Xunming, ZHANG Quan, YANG Jianguo, et al. Novel hybrid computing architecture with memristor-based processing-in-memory for data-intensive applications[C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–3. doi: 10.1109/ICSICT.2018.8564888. [29] ALAM M R, NAJAFI M H, and NEJAD N T. Exact stochastic computing multiplication in memristive memory[J]. IEEE Design & Test, To be published. doi: 10.1109/MDAT.2021.3051296 [30] KOLMS T, LANG C, WALDNER A, et al. Towards in-memory computing: Arithmetic operations on real memristors[C]. The IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020: 2296–2301. doi: 10.1109/IECON43393.2020.9254441. [31] ZANOTTI T, PUGLISI F M, and PAVAN P. Reconfigurable smart in-memory computing platform supporting logic and binarized neural networks for low-power edge devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(4): 478–487. doi: 10.1109/JETCAS.2020.3030542 [32] CHENG Long, LI Yi, YIN Kangsheng, et al. Functional demonstration of a memristive arithmetic logic unit (MemALU) for in-memory computing[J]. Advanced Functional Materials, 2019, 29(49): 1905660. doi: 10.1002/adfm.201905660 [33] DAI Lan, GUO Hong, LIN Qipeng, et al. An in-memory-computing design of multiplier based on multilevel-cell of resistance switching random access memory[J]. Chinese Journal of Electronics, 2018, 27(6): 1151–1157. doi: 10.1049/cje.2018.08.006 [34] ZHOU Yaxiong, LI Yi, DUAN Nian, et al. Boolean and sequential logic in a one-memristor-one-resistor (1M1R) structure for in-memory computing[J]. Advanced Electronic Materials, 2018, 4(9): 1800229. doi: 10.1002/aelm.201800229 [35] HALAWANI Y, MOHAMMAD B, LEBDEH M A, et al. ReRAM-based in-memory computing for search engine and neural network applications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 388–397. doi: 10.1109/JETCAS.2019.2909317 [36] CHU M, KIM B, PARK S, et al. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2410–2419. doi: 10.1109/TIE.2014.2356439 [37] LI Can, BELKIN D, LI Yunning, et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks[J]. Nature Communications, 2018, 9(1): 2385. doi: 10.1038/s41467-018-04484-2 [38] DUAN Qingxi, JING Zhaokun, ZOU Xiaolong, et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks[J]. Nature Communications, 2020, 11(1): 3399. doi: 10.1038/s41467-020-17215-3 [39] YAO Peng, WU Huaqiang, GAO Bin, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641–646. doi: 10.1038/s41586-020-1942-4 [40] BALAJI A, DAS A, WU Yuefeng, et al. Mapping spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(1): 76–86. doi: 10.1109/TVLSI.2019.2951493 [41] TAN Hongwei, MAJUMDAR S, QIN Qihang, et al. Mimicking neurotransmitter release and long-term plasticity by oxygen vacancy migration in a tunnel junction memristor[J]. Advanced Intelligent Systems, 2019, 1(2): 1900036. doi: 10.1002/aisy.201900036 [42] WIJESINGHE P, ANKIT A, SENGUPTA A, et al. An all-memristor deep spiking neural computing system: A step toward realizing the low-power stochastic brain[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(5): 345–358. doi: 10.1109/TETCI.2018.2829924 [43] ZHANG Yang, WANG Xiaoping, and FRIEDMAN E G. Memristor-based circuit design for multilayer neural networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(2): 677–686. doi: 10.1109/TCSI.2017.2729787 [44] ZHAO Yongyan, SUN Wuji, WANG Jia, et al. All‐inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse[J]. Advanced Functional Materials, 2020, 30(39): 2004245. doi: 10.1002/adfm.202004245 [45] GREENBERG-TOLEDO T, MAZOR R, HAJ-ALI A, et al. Supporting the momentum training algorithm using a memristor-based synapse[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(4): 1571–1583. doi: 10.1109/TCSI.2018.2888538 [46] SUN Shengyang, XU Hui, LI Jiwei, et al. Cascaded architecture for memristor crossbar array based larger-scale neuromorphic computing[J]. IEEE Access, 2019, 7: 61679–61688. doi: 10.1109/ACCESS.2019.2915787 [47] HU Lingxiang, YANG Jing, WANG Jingrui, et al. All‐optically controlled memristor for optoelectronic neuromorphic computing[J]. Advanced Functional Materials, 2021, 31(4): 2005582. doi: 10.1002/adfm.202005582 [48] LI Haoyang, HUANG Xiaodi, YUAN Junhui, et al. Controlled memory and threshold switching behaviors in a heterogeneous memristor for neuromorphic computing[J]. Advanced Electronic Materials, 2020, 6(8): 2000309. doi: 10.1002/aelm.202000309 [49] BAE W and YOON K J. Weight update generation circuit utilizing phase noise of integrated complementary metal-oxide-semiconductor ring oscillator for memristor crossbar array neural network-based stochastic learning[J]. Advanced Intelligent Systems, 2020, 2(5): 2000011. doi: 10.1002/aisy.202000011 [50] ZHU Bowen, WANG Hong, LIU Yaqing, et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture[J]. Advanced Materials, 2016, 28(8): 1559–1566. doi: 10.1002/adma.201504754 [51] ZHANG Chen, YE Wenbin, ZHOU Kui, et al. Bioinspired artificial sensory nerve based on nafion memristor[J]. Advanced Functional Materials, 2019, 29(20): 1808783. doi: 10.1002/adfm.201808783 [52] JIANG Chengming, LI Qikun, SUN Nan, et al. A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system[J]. Nano Energy, 2020, 77: 105120. doi: 10.1016/j.nanoen.2020.105120 [53] HE Ke, LIU Yaqing, WANG Ming, et al. An artificial somatic reflex arc[J]. Advanced Materials, 2020, 32(4): 1905399. doi: 10.1002/adma.201905399 [54] LIU Fengyuan, TAUBE W, YOGESWARAN N, et al. Transforming the short-term sensing stimuli to long-term e-skin memory[C]. 2017 IEEE SENSORS, Glasgow, UK, 2017: 1–3. doi: 10.1109/ICSENS.2017.8234187. [55] SUN Yihui, ZHENG Xin, YAN Xiaoqin, et al. Bioinspired tribotronic resistive switching memory for self-powered memorizing mechanical stimuli[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43822–43829. doi: 10.1021/acsami.7b15269 [56] WANG Zilu, HONG Qinghui, and WANG Xiaoping. Memristive circuit design of emotional generation and evolution based on skin-like sensory processor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(4): 631–644. doi: 10.1109/TBCAS.2019.2923055 [57] WAN Changjin, CAI Pingqiang, GUO Xintong, et al. An artificial sensory neuron with visual-haptic fusion[J]. Nature Communications, 2020, 11: 4602. doi: 10.1038/s41467-020-18375-y [58] RAHMAN M A, WALIA S, NAZNEE S, et al. Artificial somatosensors: Feedback receptors for electronic skins[J]. Advanced Intelligent Systems, 2020, 2(11): 2000094. doi: 10.1002/aisy.202000094 [59] LIU Haitao, HUA Qilin, YU Ruomeng, et al. A bamboo-like GaN microwire-based piezotronic memristor[J]. Advanced Functional Materials, 2016, 26(29): 5307–5314. doi: 10.1002/adfm.201600962 [60] KIM Y, CHORTOS A, XU Wentao, et al. A bioinspired flexible organic artificial afferent nerve[J]. Science, 2018, 360(6392): 998–1003. doi: 10.1126/science.aao0098 [61] EMBORAS A, GOYKHMAN I, DESIATOV B, et al. Nanoscale plasmonic memristor with optical readout functionality[J]. Nano Letters, 2013, 13(12): 6151–6155. doi: 10.1021/nl403486x [62] TAN Hongwei, LIU Gang, ZHU Xiaojian, et al. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions[J]. Advanced Materials, 2015, 27(17): 2797–2803. doi: 10.1002/adma.201500039 [63] SEO S, JO S H, KIM S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition[J]. Nature Communications, 2018, 9(1): 5106. doi: 10.1038/s41467-018-07572-5 [64] ZHOU Feichi, ZHOU Zheng, CHEN Jiewei, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 2019, 14(8): 776–782. doi: 10.1038/s41565-019-0501-3 [65] YANG Lin, SINGH M, SHEN S W, et al. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation[J]. Advanced Functional Materials, 2020, 31(6): 2008259. doi: 10.1002/adfm.202008259 [66] LORENZI P, SUCRE V, ROMANO G, et al. Memristor based neuromorphic circuit for visual pattern recognition[C]. 2015 International Conference on Memristive Systems (MEMRISYS), Paphos, Cyprus, 2015: 1–2. doi: 10.1109/MEMRISYS.2015.7378387. [67] SARKAR M, CHOWDHURY A, ARKA A I, et al. A new supervised learning approach for visual pattern recognition using discrete circuit elements and memristor array[C]. The TENCON 2017 – 2017 IEEE Region 10 Conference, Penang, Malaysia, 2017: 223–228. doi: 10.1109/TENCON.2017.8227866. [68] ASCOLI A, MESSARIS I, TETZLAFF R, et al. CNNs with bistable-like non-volatile memristors: A novel mem-computing paradigm for the IoT era[C]. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 2018: 541–544. doi: 10.1109/ICECS.2018.8617924. [69] DONG Zhekang, LAI C S, HE Yufei, et al. Hybrid dual-CMOS/memristor synapse-based neural network with its applications in image super-resolution[J]. IET Circuits, Devices & Systems, 2019, 13(8): 1241–1248. doi: 10.1049/iet-cds.2018.5062 [70] HALAWANI Y, MOHAMMAD B, AL-QUTAYRI M, et al. Memristor-based hardware accelerator for image compression[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2749–2758. doi: 10.1109/TVLSI.2018.2835572 [71] WU Lindong, WANG Zongwei, WANG Bowen, et al. Emulation of biphasic plasticity in retinal electrical synapses for light-adaptive pattern pre-processing[J]. Nanoscale, 2021, 13(6): 3483–3492. doi: 10.1039/d0nr08012h [72] LIN Ya, WANG Cong, REN Yanyun, et al. Analog-digital hybrid memristive devices for image pattern recognition with tunable learning accuracy and speed[J]. Small Methods, 2019, 3(10): 1900160. doi: 10.1002/smtd.201900160 [73] SUN Yilin, QIAN Liu, XIE Dan, et al. Photoelectric synaptic plasticity realized by 2D perovskite[J]. Advanced Functional Materials, 2019, 29(28): 1902538. doi: 10.1002/adfm.201902538 [74] YANG C M, CHEN T C, VERMA D, et al. Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics[J]. Advanced Functional Materials, 2020, 30(30): 2001598. doi: 10.1002/adfm.202001598 [75] WANG Xin, LU Yang, ZHANG Junyao, et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors[J]. Small, 2021, 17(2): 2005491. doi: 10.1002/smll.202005491 [76] HSU H T, YANG Donglin, WIYANTO L D, et al. Red-light-stimulated photonic synapses based on non-volatile perovskite-based photomemory[J]. Advanced Photonics Research, 2021: 2000185. doi: 10.1002/adpr.202000185 [77] ZHANG Lei, YU Hao, XIAO Cancheng, et al. Building light stimulated synaptic memory devices for visual memory simulation[J]. Advanced Electronic Materials, 2021, 7(1): 2000945. doi: 10.1002/aelm.202000945 [78] DONG Zhekang, LAI C S, QI Donglian, et al. A general memristor-based pulse coupled neural network with variable linking coefficient for multi-focus image fusion[J]. Neurocomputing, 2018, 308: 172–183. doi: 10.1016/j.neucom.2018.04.066 [79] NYENKE C and DONG Lixin. Sensing ambient oxygen using a W/CuxO/Cu memristor[C]. The 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xi’an, China, 2015: 254–258. doi: 10.1109/NEMS.2015.7147421. [80] SHULAKER M M, HILLS G, PARK R S, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547(7661): 74–78. doi: 10.1038/nature22994 [81] IWATA T, ONO K, YOSHIKAWA T, et al. Gas discrimination based on single-device extraction of transient sensor response by a MetalOxide memristor toward olfactory sensor array[C]. 2019 IEEE SENSORS, Montreal, Canada, 2019: 1–4. doi: 10.1109/SENSORS43011.2019.8956826. [82] ADEYEMO A, JABIR A, MATHEW J, et al. Reliable gas sensing with memristive array[C]. 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece, 2017: 244–246. [83] KHANDELWAL S, BALA A, GUPTA V, et al. Fault modeling and simulation of memristor based gas sensors[C]. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS), Rhodes, Greece, 2019: 58–59. doi: 10.1109/IOLTS.2019.8854459. [84] WEN Changbao, HONG Jitong, RU Feng, et al. A novel memristor-based gas cumulative flow sensor[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9531–9538. doi: 10.1109/TIE.2019.2891436 [85] VIDIŠ M, PLECENIK T, MOŠKO M, et al. Gasistor: A memristor based gas-triggered switch and gas sensor with memory[J]. Applied Physics Letters, 2019, 115(9): 093504. doi: 10.1063/1.5099685 [86] SHAH J, BARANGI M, and MAZUMDER P. Memristor crossbar memory for hybrid ultra low power hearing aid speech processor[C]. 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 2013: 83–86. doi: 10.1109/NANO.2013.6720867. [87] SALEH Q, MERKEL C, KUDITHIPUDI D, et al. Memristive computational architecture of an echo state network for real-time speech-emotion recognition[C]. 2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Verona, USA, 2015: 1–5. doi: 10.1109/CISDA.2015.7208624. [88] RAFIQUE M A, LEE B G, and JEON M. Hybrid neuromorphic system for automatic speech recognition[J]. Electronics Letters, 2016, 52(17): 1428–1430. doi: 10.1049/el.2016.0975 [89] WANG Wei, PEDRETTI G, MILO V, et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses[J]. Science Advances, 2018, 4(9): eaat4752. doi: 10.1126/sciadv.aat4752 [90] SUN Linfeng, ZHANG Yishu, HWANG G, et al. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization[J]. Nano Letters, 2018, 18(4): 3229–3234. doi: 10.1021/acs.nanolett.8b00994 [91] LI Can, HAN Lili, JIANG Hao, et al. Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors[J]. Nature Communications, 2017, 8: 15666. doi: 10.1038/ncomms15666 [92] BISHOP M D, WONG H S P, MITRA S, et al. Monolithic 3-D integration[J]. IEEE Micro, 2019, 39(6): 16–27. doi: 10.1109/MM.2019.2942982 [93] LIN Peng, LI Can, WANG Zhongrui, et al. Three-dimensional memristor circuits as complex neural networks[J]. Nature Electronics, 2020, 3(4): 225–232. doi: 10.1038/s41928-020-0397-9 [94] WANG Tianyu, MENG Jialin, CHEN Lin, et al. Flexible 3D memristor array for binary storage and multi‐states neuromorphic computing applications[J]. InfoMat, 2021, 3(2): 212–221. doi: 10.1002/inf2.12158 [95] AN Hongyu, EHSAN M A, ZHOU Zhen, et al. Monolithic 3D neuromorphic computing system with hybrid CMOS and memristor-based synapses and neurons[J]. Integration, 2019, 65: 273–281. doi: 10.1016/j.vlsi.2017.10.009 [96] SUN W, CHOI S, KIM B, et al. Three-dimensional (3D) vertical resistive random-access memory (VRRAM) synapses for neural network systems[J]. Materials, 2019, 12(20): 3451. doi: 10.3390/ma12203451 [97] FERNANDO B R, QI Yangjie, YAKOPCIC C, et al. 3D memristor crossbar architecture for a multicore neuromorphic system[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020. doi: 10.1109/IJCNN48605.2020.9206929. 期刊类型引用(4)
1. 杨兴华,杨子翼,苏海津,姜炜煌,张静,魏琦,骆丽,王忠静,吕华芳,乔飞. 基于SRAM的感存算一体化技术综述. 电子与信息学报. 2023(08): 2828-2838 . 本站查看
2. 陈鑫辉,倪力,刘子坚,张跃军,陈祺来,刘钢. 基于ZnO忆阻器的高鲁棒性毛刺型物理不可克隆函数设计. 电子与信息学报. 2023(09): 3331-3339 . 本站查看
3. 张宇琦,王俊杰,吕子玉,韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报. 2022(14): 321-337 . 百度学术
4. 姚佳伦,杨雨梦,陈昊瑜. 用于存算一体的磁性随机存储器概述. 功能材料与器件学报. 2021(06): 525-535 . 百度学术
其他类型引用(19)
-