[1] |
GLEICK J and HILBORN R C. Chaos, making a new science[J]. American Journal of Physics, 1988, 56(11): 1053–1054. doi: 10.1119/1.15345
|
[2] |
陈关荣, 吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003: 278.CHEN Guanrong and LÜ Jinhu. Dynamics Analysis, Control and Synchronization of Lorenz System Family[M]. Beijing: Science Press, 2003: 278.
|
[3] |
HASLER M. Engineering chaos for encryption and broadband communication[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 353(1701): 115–126.
|
[4] |
OPPENHEIM A V, WORNELL G W, ISABELLE S H, et al. Signal processing in the context of chaotic signals[C]. ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 117–120.
|
[5] |
GRASSI G and MASCOLO S. A system theory approach for designing cryptosystems based on hyperchaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46(9): 1135–1138. doi: 10.1109/81.788815
|
[6] |
WANG B, ZOU F C, and CHENG J. A memristor-based chaotic system and its application in image encryption[J]. Optik, 2018, 154: 538–544. doi: 10.1016/j.ijleo.2017.10.080
|
[7] |
HASSAN M F. A new approach for secure communication using constrained hyperchaotic systems[J]. Applied Mathematics and Computation, 2014, 246: 711–730. doi: 10.1016/j.amc.2014.08.029
|
[8] |
FILALI R L, BENREJEB M, and BORNE P. On observer-based secure communication design using discrete-time hyperchaotic systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(5): 1424–1432. doi: 10.1016/j.cnsns.2013.09.005
|
[9] |
ELBERT T, RAY W J, KOWALIK Z J, et al. Chaos and physiology: Deterministic chaos in excitable cell assemblies[J]. Physiological Reviews, 1994, 74(1): 1–47. doi: 10.1152/physrev.1994.74.1.1
|
[10] |
YANG Lijiang and CHEN Tianlun. Application of chaos in genetic algorithms[J]. Communications in Theoretical Physics, 2002, 38(2): 168–172. doi: 10.1088/0253-6102/38/2/168
|
[11] |
MASLOV V P. Theory of chaos and its application to the crisis of debts and the origin of inflation[J]. Russian Journal of Mathematical Physics, 2009, 16(1): 103–120. doi: 10.1134/S1061920809010087
|
[12] |
LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[13] |
CHUA L, KOMURO M, and MATSUMOTO T. The double scroll family[J]. IEEE Transactions on Circuits and Systems, 1986, 33(11): 1072–1118. doi: 10.1109/TCS.1986.1085869
|
[14] |
MADAN R N. Chua’s Circuit: A Paradigm for Chaos[M]. Singapore: World Scientific, 1993: 1042.
|
[15] |
LÜ Jinhu, CHEN Guanrong, and ZHANG Suochun. Dynamical analysis of a new chaotic attractor[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1001–1015. doi: 10.1142/S0218127402004851
|
[16] |
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
|
[17] |
ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
|
[18] |
BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
|
[19] |
闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688.MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688.
|
[20] |
STANKEVICH N and VOLKOV E. Multistability in a three-dimensional oscillator: Tori, resonant cycles and chaos[J]. Nonlinear Dynamics, 2018, 94(4): 2455–2467. doi: 10.1007/s11071-018-4502-9
|
[21] |
RAJAGOPAL K, JAFARI S, KARTHIKEYAN A, et al. Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors[J]. Circuits, Systems, and Signal Processing, 2018, 37(9): 3702–3724. doi: 10.1007/s00034-018-0750-7
|
[22] |
ZHANG Sen, ZENG Yicheng, LI Zhijun, et al. A novel simple no-equilibrium chaotic system with complex hidden dynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1465–1476. doi: 10.1007/s40435-018-0413-3
|
[23] |
WU Huagan, BAO Han, XU Quan, et al. Abundant coexisting multiple attractors’ behaviors in three-dimensional sine chaotic system[J]. Complexity, 2019, 2019: 3687635.
|
[24] |
NJITACKE Z T, MOGUE R L T, LEUTCHO G D, et al. Heterogeneous multistability in a novel system with purely nonlinear terms[J]. International Journal of Electronics, 2021, 108(7): 1166–1182. doi: 10.1080/00207217.2020.1833371
|
[25] |
包涵, 包伯成, 林毅, 等. 忆阻自激振荡系统的隐藏吸引子及其动力学特性[J]. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501BAO Han, BAO Bocheng, LIN Yi, et al. Hidden attractor and its dynamical characteristic in memristive self-oscillating system[J]. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
|
[26] |
KENGNE J, TABEKOUENG Z N, TAMBA V K, et al. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(10): 103126. doi: 10.1063/1.4934653
|
[27] |
BAO Bocheng, BAO Han, WANG Ning, et al. Hidden extreme multistability in memristive hyperchaotic system[J]. Chaos, Solitons & Fractals, 2017, 94: 102–111. doi: 10.1016/j.chaos.2016.11.016
|
[28] |
BAO Han, JIANG Tao, CHU Kaibin, et al. Memristor-based canonical Chua’s circuit: Extreme multistability in voltage-current domain and its controllability in flux-charge domain[J]. Complexity, 2018, 2018: 5935637.
|
[29] |
CHEN Mo, SUN Mengxia, BAO Bocheng, et al. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain[J]. Nonlinear Dynamics, 2018, 91(2): 1395–1412. doi: 10.1007/s11071-017-3952-9
|
[30] |
WANG Guangyi, SHI Chuanbao, WANG Xiaowei, et al. Coexisting oscillation and extreme multistability for a memcapacitor-based circuit[J]. Mathematical Problems in Engineering, 2017, 2017: 6504969.
|
[31] |
AHMADI A, WANG X, NAZARIMEHR F, et al. Coexisting infinitely many attractors in a new chaotic system with a curve of equilibria: Its extreme multi-stability and Kolmogorov–Sinai entropy computation[J]. Advances in Mechanical Engineering, 2019, 11(11): 1–8.
|
[32] |
GONG Lihua, WU Rouging, and ZHOU Nanrun. A new 4D chaotic system with coexisting hidden chaotic attractors[J]. International Journal of Bifurcation and Chaos, 2020, 30(10): 2050142. doi: 10.1142/S0218127420501424
|
[33] |
HUANG Lilian, YAO Wenju, XIANG Jianhong, et al. Heterogeneous and homogenous multistabilities in a novel 4D memristor-based chaotic system with discrete bifurcation diagrams[J]. Complexity, 2020, 2020: 2408460.
|
[34] |
LIU Wenbo and CHEN Guanrong. A new chaotic system and its generation[J]. International Journal of Bifurcation and Chaos, 2003, 13(1): 261–267. doi: 10.1142/S0218127403006509
|
[35] |
LIU Wenbo and CHEN Guanrong. Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?[J]. International Journal of Bifurcation and Chaos, 2004, 14(4): 1395–1403. doi: 10.1142/S0218127404009880
|
[36] |
包伯成. 混沌电路导论[M]. 北京: 科学出版社, 2013: 45–46.BAO Bocheng. An Introduction to Chaotic Circuits[M]. Beijing: Science Press, 2013: 45–46.
|