高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有多对称同质吸引子的四维混沌系统的超级多稳定性研究

黄丽莲 姚文举 项建弘 王霖郁

黄丽莲, 姚文举, 项建弘, 王霖郁. 一种具有多对称同质吸引子的四维混沌系统的超级多稳定性研究[J]. 电子与信息学报, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095
引用本文: 黄丽莲, 姚文举, 项建弘, 王霖郁. 一种具有多对称同质吸引子的四维混沌系统的超级多稳定性研究[J]. 电子与信息学报, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095
HUANG Lilian, YAO Wenju, XIANG Jianhong, WANG Linyu. Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors[J]. Journal of Electronics & Information Technology, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095
Citation: HUANG Lilian, YAO Wenju, XIANG Jianhong, WANG Linyu. Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors[J]. Journal of Electronics & Information Technology, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095

一种具有多对称同质吸引子的四维混沌系统的超级多稳定性研究

doi: 10.11999/JEIT201095
基金项目: 国家自然科学基金(61203004),黑龙江省自然科学基金(F201220),黑龙省自然科学基金联合引导项目(LH2020F022)
详细信息
    作者简介:

    黄丽莲:女,1972年生,教授,硕士生导师,副博士生导师,研究方向为非线性系统的混沌控制与同步

    姚文举:男,1994年生,硕士生,研究方向为非线性系统的混沌控制与同步

    项建弘:男,1977年生,副教授,研究方向为5G无线通信、人工智能与深度学习、自适应信号处理等

    王霖郁:女,1977年生,副教授,研究方向为电路与系统

    通讯作者:

    项建弘 xiangjianhong@hrbeu.edu.cn

  • 中图分类号: TP271

Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors

Funds: The National Natural Science Foundation of China (61203004), The Natural Science Foundation of Heilongjiang Province (F201220),The Heilongjiang Natural Science Foundation Joint Guide Project (LH2020F022)
  • 摘要: 该文在一个经典3维混沌系统的基础上提出一个新的具有超级多稳定性的4维混沌系统。新系统具有一个线平衡点,可以产生无限多对称的同质吸引子。通过相轨图和庞加莱截面等方法分析了系统的混沌特性。重点利用相轨图、分岔图和Lyapunov指数谱等方法分析了初始条件对系统超级多稳定性的影响,分析表明该系统具有很大的初值变化范围,除零点外恒定的Lyapunov指数谱,中心对称的离散分岔图。进一步地,该文研究了系统初值对称性与吸引子对称性的关系,不同于现有混沌系统中的对称吸引子,该系统可以产生无限多对称的同质吸引子。最后,利用电路仿真软件搭建模拟电路捕捉该系统的混沌吸引子,其结果验证了数值仿真的正确性。
  • 图  1  混沌吸引子的相轨图

    图  2  混沌吸引子的庞加莱截面

    图  3  初值$w(0)$$[ - {\rm{200}},{\rm{200}}]$区间内变化的分岔图和Lyapunov指数谱

    图  4  无限多共存吸引子的相图

    图  5  初值$x(0)$$[ - {10^3},{10^3}]$区间内变化的分岔图和Lyapunov指数谱

    图  6  初值$y(0)$$[ - {10^3},{10^3}]$区间内变化的分岔图和Lyapunov指数谱

    图  7  无限多同质吸引子的相图

    图  8  初值$z(0)$$[ - {10^3},{10^3}]$区间内变化的分岔图和Lyapunov指数谱

    图  9  对称的同质吸引子的相图

    图  10  对称吸引子在$t = 30\;{\rm{s}}$内的时域波形图

    图  11  系统式(2)的模拟电路图

    图  12  混沌吸引子的VxVz平面电路仿真结果

  • [1] GLEICK J and HILBORN R C. Chaos, making a new science[J]. American Journal of Physics, 1988, 56(11): 1053–1054. doi: 10.1119/1.15345
    [2] 陈关荣, 吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003: 278.

    CHEN Guanrong and LÜ Jinhu. Dynamics Analysis, Control and Synchronization of Lorenz System Family[M]. Beijing: Science Press, 2003: 278.
    [3] HASLER M. Engineering chaos for encryption and broadband communication[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 353(1701): 115–126.
    [4] OPPENHEIM A V, WORNELL G W, ISABELLE S H, et al. Signal processing in the context of chaotic signals[C]. ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 117–120.
    [5] GRASSI G and MASCOLO S. A system theory approach for designing cryptosystems based on hyperchaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46(9): 1135–1138. doi: 10.1109/81.788815
    [6] WANG B, ZOU F C, and CHENG J. A memristor-based chaotic system and its application in image encryption[J]. Optik, 2018, 154: 538–544. doi: 10.1016/j.ijleo.2017.10.080
    [7] HASSAN M F. A new approach for secure communication using constrained hyperchaotic systems[J]. Applied Mathematics and Computation, 2014, 246: 711–730. doi: 10.1016/j.amc.2014.08.029
    [8] FILALI R L, BENREJEB M, and BORNE P. On observer-based secure communication design using discrete-time hyperchaotic systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(5): 1424–1432. doi: 10.1016/j.cnsns.2013.09.005
    [9] ELBERT T, RAY W J, KOWALIK Z J, et al. Chaos and physiology: Deterministic chaos in excitable cell assemblies[J]. Physiological Reviews, 1994, 74(1): 1–47. doi: 10.1152/physrev.1994.74.1.1
    [10] YANG Lijiang and CHEN Tianlun. Application of chaos in genetic algorithms[J]. Communications in Theoretical Physics, 2002, 38(2): 168–172. doi: 10.1088/0253-6102/38/2/168
    [11] MASLOV V P. Theory of chaos and its application to the crisis of debts and the origin of inflation[J]. Russian Journal of Mathematical Physics, 2009, 16(1): 103–120. doi: 10.1134/S1061920809010087
    [12] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [13] CHUA L, KOMURO M, and MATSUMOTO T. The double scroll family[J]. IEEE Transactions on Circuits and Systems, 1986, 33(11): 1072–1118. doi: 10.1109/TCS.1986.1085869
    [14] MADAN R N. Chua’s Circuit: A Paradigm for Chaos[M]. Singapore: World Scientific, 1993: 1042.
    [15] LÜ Jinhu, CHEN Guanrong, and ZHANG Suochun. Dynamical analysis of a new chaotic attractor[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1001–1015. doi: 10.1142/S0218127402004851
    [16] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [17] ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
    [18] BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
    [19] 闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688.

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688.
    [20] STANKEVICH N and VOLKOV E. Multistability in a three-dimensional oscillator: Tori, resonant cycles and chaos[J]. Nonlinear Dynamics, 2018, 94(4): 2455–2467. doi: 10.1007/s11071-018-4502-9
    [21] RAJAGOPAL K, JAFARI S, KARTHIKEYAN A, et al. Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors[J]. Circuits, Systems, and Signal Processing, 2018, 37(9): 3702–3724. doi: 10.1007/s00034-018-0750-7
    [22] ZHANG Sen, ZENG Yicheng, LI Zhijun, et al. A novel simple no-equilibrium chaotic system with complex hidden dynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1465–1476. doi: 10.1007/s40435-018-0413-3
    [23] WU Huagan, BAO Han, XU Quan, et al. Abundant coexisting multiple attractors’ behaviors in three-dimensional sine chaotic system[J]. Complexity, 2019, 2019: 3687635.
    [24] NJITACKE Z T, MOGUE R L T, LEUTCHO G D, et al. Heterogeneous multistability in a novel system with purely nonlinear terms[J]. International Journal of Electronics, 2021, 108(7): 1166–1182. doi: 10.1080/00207217.2020.1833371
    [25] 包涵, 包伯成, 林毅, 等. 忆阻自激振荡系统的隐藏吸引子及其动力学特性[J]. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501

    BAO Han, BAO Bocheng, LIN Yi, et al. Hidden attractor and its dynamical characteristic in memristive self-oscillating system[J]. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [26] KENGNE J, TABEKOUENG Z N, TAMBA V K, et al. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(10): 103126. doi: 10.1063/1.4934653
    [27] BAO Bocheng, BAO Han, WANG Ning, et al. Hidden extreme multistability in memristive hyperchaotic system[J]. Chaos, Solitons & Fractals, 2017, 94: 102–111. doi: 10.1016/j.chaos.2016.11.016
    [28] BAO Han, JIANG Tao, CHU Kaibin, et al. Memristor-based canonical Chua’s circuit: Extreme multistability in voltage-current domain and its controllability in flux-charge domain[J]. Complexity, 2018, 2018: 5935637.
    [29] CHEN Mo, SUN Mengxia, BAO Bocheng, et al. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain[J]. Nonlinear Dynamics, 2018, 91(2): 1395–1412. doi: 10.1007/s11071-017-3952-9
    [30] WANG Guangyi, SHI Chuanbao, WANG Xiaowei, et al. Coexisting oscillation and extreme multistability for a memcapacitor-based circuit[J]. Mathematical Problems in Engineering, 2017, 2017: 6504969.
    [31] AHMADI A, WANG X, NAZARIMEHR F, et al. Coexisting infinitely many attractors in a new chaotic system with a curve of equilibria: Its extreme multi-stability and Kolmogorov–Sinai entropy computation[J]. Advances in Mechanical Engineering, 2019, 11(11): 1–8.
    [32] GONG Lihua, WU Rouging, and ZHOU Nanrun. A new 4D chaotic system with coexisting hidden chaotic attractors[J]. International Journal of Bifurcation and Chaos, 2020, 30(10): 2050142. doi: 10.1142/S0218127420501424
    [33] HUANG Lilian, YAO Wenju, XIANG Jianhong, et al. Heterogeneous and homogenous multistabilities in a novel 4D memristor-based chaotic system with discrete bifurcation diagrams[J]. Complexity, 2020, 2020: 2408460.
    [34] LIU Wenbo and CHEN Guanrong. A new chaotic system and its generation[J]. International Journal of Bifurcation and Chaos, 2003, 13(1): 261–267. doi: 10.1142/S0218127403006509
    [35] LIU Wenbo and CHEN Guanrong. Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?[J]. International Journal of Bifurcation and Chaos, 2004, 14(4): 1395–1403. doi: 10.1142/S0218127404009880
    [36] 包伯成. 混沌电路导论[M]. 北京: 科学出版社, 2013: 45–46.

    BAO Bocheng. An Introduction to Chaotic Circuits[M]. Beijing: Science Press, 2013: 45–46.
  • 加载中
图(12)
计量
  • 文章访问数:  976
  • HTML全文浏览量:  649
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回