高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FPGA技术的双磁控忆阻Shinriki振荡器对称行为分析

闵富红 郑宏亮 芮智 曹弋

闵富红, 郑宏亮, 芮智, 曹弋. 基于FPGA技术的双磁控忆阻Shinriki振荡器对称行为分析[J]. 电子与信息学报, 2021, 43(11): 3384-3392. doi: 10.11999/JEIT201079
引用本文: 闵富红, 郑宏亮, 芮智, 曹弋. 基于FPGA技术的双磁控忆阻Shinriki振荡器对称行为分析[J]. 电子与信息学报, 2021, 43(11): 3384-3392. doi: 10.11999/JEIT201079
Fuhong MIN, Hongliang ZHENG, Zhi RUI, Yi CAO. The Analysis of Symmetrical Behavior for a Dual Flux-controlled Memristive Shinriki Oscillator Based on FPGA[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3384-3392. doi: 10.11999/JEIT201079
Citation: Fuhong MIN, Hongliang ZHENG, Zhi RUI, Yi CAO. The Analysis of Symmetrical Behavior for a Dual Flux-controlled Memristive Shinriki Oscillator Based on FPGA[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3384-3392. doi: 10.11999/JEIT201079

基于FPGA技术的双磁控忆阻Shinriki振荡器对称行为分析

doi: 10.11999/JEIT201079
基金项目: 国家自然科学基金(61971228)
详细信息
    作者简介:

    闵富红:女,1970年生,教授,博士生导师,研究方向为非线性电路与系统

    郑宏亮:男,1994年生,硕士生,研究方向为非线性电路的设计及分析

    芮智:男,1998年生,硕士生,研究方向为非线性电路的分析

    曹弋:女,1971年生,副教授,硕士生导师,研究方向为控制理论、计算机控制

    通讯作者:

    闵富红 minfuhong@njnu.edu.com

  • 中图分类号: TN601

The Analysis of Symmetrical Behavior for a Dual Flux-controlled Memristive Shinriki Oscillator Based on FPGA

Funds: The National Natural Science Foundation of China (61971228)
  • 摘要: 该文通过将无源磁控忆阻器替换Shinriki振荡器中的二极管串并联支路,并利用有源磁控忆阻代替RLC谐振回路中的电阻,同时在电感支路串联电阻,得到一个新型双磁控忆阻Shinriki振荡器。通过特定参数的共存分岔图和Lyapunov指数谱,开创性地发现了振荡器具有的对称分岔行为,在双参数平面内展现运动状态分布的对称性。同时,在对称参数-初值平面的吸引盆中,分析对称域内系统的多稳态特性。并对存在的对称反单调现象、多运动状态吸引子对称共存和对称域中依赖初值的不完全对称行为进行研究。此外,基于FPGA技术完成双磁控忆阻Shinriki振荡器的数字电路实验,示波器上捕捉的波形验证了系统对称动力学行为分析的正确性。
  • 图  1  双忆阻Shinriki振荡器模型

    图  2  系统混沌相图

    图  3  共存分岔图和Lyapunov指数谱

    图  4  双参数动力学地图

    图  5  对称参数$d$决定的初值$z(0)$区间内聚合费根鲍姆树现象

    图  6  对称参数$c$决定的初值$z(0)$区间内聚合费根鲍姆树现象

    图  7  参数$c$区间内共存分岔图和Lyapnnov指数谱

    图  8  对称参数与初值的吸引盆

    图  9  参数$d$和初值$y(0)$决定的共存相轨迹图

    图  10  参数$c$和初值$y(0)$决定的共存相轨迹图

    图  11  FPGA数字电路实验结果

    图  12  多稳态相轨迹图验证,CH1=200 mV, CH2=1 V

    表  1  系统参数设置值

    参数设置值参数设置值参数设置值
    a3d2${m_2}$3.2
    b1e0.05${n_1}$–0.02
    c15${m_1}$1.2${n_2}$0.01
    下载: 导出CSV

    表  2  振荡器随参数c, d变化时的运动状态和对应Lyapunov指数

    运动状态Lyapunov指数
    参数c<14.484大周期(0,–,–,–,–)
    (14.484,16.31)∪(16.684,18.928)复杂运动(混沌,多周期)(+,0,–,–,–)
    (16.31,16.684)∪(18.928,23.68)周期运动(0,–,–,–,–)
    >23.68稳定不动点(–,–,–,–,–)
    参数d<1.592稳定不动点(–,–,–,–,–)
    (1.592,1.804)∪(1.881,1.917)周期运动(0,–,–,–,–)
    (1.804,1.881)∪(1.917,2.038)复杂运动(混沌,多周期)(+,0,–,–,–)
    >2.038大周期(0,–,–,–,–)
    下载: 导出CSV
  • [1] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [2] CHEN Mo, SUN Mengxia, BAO Han, et al. Flux-charge analysis of two-memristor-based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2197–2206. doi: 10.1109/TIE.2019.2907444
    [3] BAO Bocheng, HOU Liping, ZHU Yongxin, et al. Bifurcation analysis and circuit implementation for a tabu learning neuron model[J]. AEU-International Journal of Electronics and Communications, 2020, 121: 153235. doi: 10.1016/j.aeue.2020.153235
    [4] LI Shaolin, HE Yinghui, and CAO Hongjun. Necessary conditions for complete synchronization of a coupled chaotic aihara neuron network with electrical synapses[J]. International Journal of Bifurcation and Chaos, 2019, 29(5): 1950063. doi: 10.1142/S0218127419500639
    [5] 李付鹏, 刘敬彪, 王光义, 等. 基于混沌集的图像加密算法[J]. 电子与信息学报, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344

    LI Fupeng, LIU Jingbiao, WANG Guangyi, et al. An image encryption algorithm based on chaos set[J]. Journal of Electronics &Information Technology, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344
    [6] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器[J]. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502

    WU Jiening, WANG Lidan, and DUAN Shukai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator[J]. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [7] 曾以成, 成德武, 谭其威. 简洁无电感忆阻混沌电路及其特性[J]. 电子与信息学报, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859

    ZENG Yicheng, CHENG Dewu, and TAN Qiwei. A simple inductor-free memristive chaotic circuit and its characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859
    [8] WANG Chunhua, XIA Hu, and ZHOU Ling. A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers[J]. International Journal of Bifurcation and Chaos, 2017, 27(6): 1750091. doi: 10.1142/s0218127417500912
    [9] CHEN Mo, QI Jianwei, WU Huagan, et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit[J]. Science China Technological Sciences, 2020, 63(6): 1035–1044. doi: 10.1007/s11431-019-1458-5
    [10] WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1): 893–903. doi: 10.1007/s11071-015-2375-8
    [11] WU Huagan, YE Yi, CHEN Mo, et al. Extremely slow passages in low-pass filter-based memristive oscillator[J]. Nonlinear Dynamics, 2019, 97(4): 2339–2353. doi: 10.1007/s11071-019-05131-1
    [12] HUA Mengjie, YANG Shuo, XU Quan, et al. Symmetrically scaled coexisting behaviors in two types of simple jerk circuits[J]. Circuit World, 2020, 47(1): 61–70. doi: 10.1108/CW-02-2020-0028
    [13] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析[J]. 物理学报, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453

    LV Yanmin and MIN Fuhong. Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array[J]. Acta Physica Sinica, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [14] LI Chuang, MIN Fuhong, and LI Chunbiao. Multiple coexisting attractors of the serial–parallel memristor-based chaotic system and its adaptive generalized synchronization[J]. Nonlinear Dynamics, 2018, 94(4): 2785–2806. doi: 10.1007/s11071-018-4524-3
    [15] CHANG Hui, LI Yuxia, YUAN Fang, et al. Extreme multistability with hidden attractors in a simplest memristor-based circuit[J]. International Journal of Bifurcation and Chaos, 2019, 29(6): 1950086. doi: 10.1142/S021812741950086X
    [16] BAO Han, LIU Wenbo, and CHEN Mo. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit[J]. Nonlinear Dynamics, 2019, 96(3): 1879–1894. doi: 10.1007/s11071-019-04890-1
    [17] BAO Bocheng, XU Li, WANG Ning, et al. Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles[J]. AEU-International Journal of Electronics and Communications, 2018, 94: 26–35. doi: 10.1016/j.aeue.2018.06.042
    [18] ZHANG Sen and ZENG Yicheng. A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees[J]. Chaos, Solitons & Fractals, 2019, 120: 25–40. doi: 10.1016/j.chaos.2018.12.036
    [19] BAO Bocheng, HU Aihuang, BAO Han, et al. Three-dimensional memristive hindmarsh–rose neuron model with hidden coexisting asymmetric behaviors[J]. Complexity, 2018, 2018: 3872573. doi: 10.1155/2018/3872573
    [20] SHINRIKI M, YAMAMOTO M, and MORI S. Multimode oscillations in a modified Van Der Pol oscillator containing a positive nonlinear conductance[J]. Proceedings of the IEEE, 1981, 69(3): 394–395. doi: 10.1109/PROC.1981.11973
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  355
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-05-25
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回