高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向车联网异构节点的区块链高效一致性共识算法研究

陈友荣 章阳 陈浩 韩蒙 刘半藤 任条娟

陈友荣, 章阳, 陈浩, 韩蒙, 刘半藤, 任条娟. 面向车联网异构节点的区块链高效一致性共识算法研究[J]. 电子与信息学报, 2022, 44(1): 314-323. doi: 10.11999/JEIT201065
引用本文: 陈友荣, 章阳, 陈浩, 韩蒙, 刘半藤, 任条娟. 面向车联网异构节点的区块链高效一致性共识算法研究[J]. 电子与信息学报, 2022, 44(1): 314-323. doi: 10.11999/JEIT201065
CHEN Yourong, ZHANG Yang, CHEN Hao, HAN Meng, LIU Banteng, REN Tiaojuan. Efficient Consistency Consensus Algorithm of Blockchain for Heterogeneous Nodes in the Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2022, 44(1): 314-323. doi: 10.11999/JEIT201065
Citation: CHEN Yourong, ZHANG Yang, CHEN Hao, HAN Meng, LIU Banteng, REN Tiaojuan. Efficient Consistency Consensus Algorithm of Blockchain for Heterogeneous Nodes in the Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2022, 44(1): 314-323. doi: 10.11999/JEIT201065

面向车联网异构节点的区块链高效一致性共识算法研究

doi: 10.11999/JEIT201065
基金项目: 浙江省公益技术应用研究计划(LGG19F010011)
详细信息
    作者简介:

    陈友荣:男,1982年生,博士,教授,研究方向为网络安全和物联网应用

    章阳:男,1998年生,硕士生,研究方向为网络安全和区块链

    陈浩:男,1998年生,硕士生,研究方向为网络安全和区块链

    韩蒙:男,1987年生,博士,助理教授,研究方向为网络安全和区块链

    刘半藤:男,1984年生,博士,副教授,研究方向为网络安全和人工智能

    任条娟:女,1965年生,博士,教授,研究方向为网络安全和车联网

    通讯作者:

    任条娟 kuanren988 @sina.com

  • 中图分类号: TN915; TP309

Efficient Consistency Consensus Algorithm of Blockchain for Heterogeneous Nodes in the Internet of Vehicles

Funds: The Public Welfare Technology Application and Research Projects of Zhejiang Province of China (LGG19F010011)
  • 摘要: 车联网异构节点由于其性能差异大、具有移动性等原因会造成区块链共识算法交易吞吐率低、交易时延较大等问题,该文提出面向车联网异构节点的区块链高效一致性共识算法(ECCA)。首先,在ECCA中,考虑由验证节点、一般节点和恶意节点组成的车联网异构节点,提出一种信用等级机制,实现信用等级划分和3类异构节点的划分。其次,提出一种跨区下的节点身份变更机制,及时调整当前区域内的节点身份。最后,提出一种改进的一致性共识算法,满足车联网的时效性需求。仿真结果表明:ECCA算法降低性能较差的一般节点和恶意节点对区块共识效率的影响,提高交易吞吐量,降低平均交易时延和平均节点通信开销。
  • 图  1  网络整体结构示意图

    图  2  ECCA算法原理

    图  3  200个节点的初始分布图

    图  4  节点信用值趋势图

    图  5  信用值模型参数对交易吞吐量的影响

    图  6  节点投票权重对交易吞吐量的影响

    图  7  节点数量对交易吞吐量的影响

    图  8  节点数量对平均交易时延的影响

    图  9  节点数量对平均节点通信开销的影响

    图  10  恶意节点比例对查准率的影响

    图  11  恶意节点比例对查全率的影响

    表  1  面向车联网异构节点的区块链高效一致性共识算法(ECCA)算法流程

     输入: 网络中节点的基本信息
     输出: 网络对车联网数据的区块共识结果
     (1) $\gamma $=60; $\kappa $=60; $\theta $=180; $\upsilon $=0.01; $\sigma $=2; ···;
     (2) while 1
     (3) if 当前不是第一次区块共识 then
     (4) 各区域根据前一次区块共识结果执行奖惩机制;
     (5) end
     (6) 各区域将各节点的累积表现分转换为累积信用值,并通过
       FCM聚类方法进行信用等级划分;
     (7) if各区域中验证节点数量小于下限阈值${\vartheta _{1}}$或各区域中验证节
       点数量大于上限阈值${\vartheta _{2}}$ then
     (8) 该区域执行节点身份变更机制,及时调整区域内节点身份;
     (9) end
     (10) if 事务范围只在单个区域内部 then
     (11) 该区域内部的全部验证节点选为参与区块共识的节点;
     (12) else
     (13) 多区域内的全部验证节点选为参与区块共识的节点;
     (14) end
     (15) 参与区块共识的验证节点通过可通信列表与节点信任等
        级,确定其可信任节点列表;
     (16) 参与区块共识的验证节点结合节点的信用等级权重交易,
        统计投票结果,确定交易集共识结果;
     (17) 参与区块共识的验证节点进行区块验证共识;
     (18) if 事务范围只在单个区域内部 then
     (19) 将区块写入到该区域从链;
     (20) else
     (21) 将区块写入全局主链;
     (22) end
     (23) end
    下载: 导出CSV
  • [1] KANG Jiawen, XIONG Zehui, NIYATO D, et al. Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2906–2920. doi: 10.1109/TVT.2019.2894944
    [2] LAI Chengzhe, LU Rongxing, ZHENG Dong, et al. Security and privacy challenges in 5G-enabled vehicular networks[J]. IEEE Network, 2020, 34(2): 37–45. doi: 10.1109/MNET.001.1900220
    [3] DWORK C and NAOR M. Pricing via processing or combatting junk mail[C]. 12th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 1992: 139–147. doi: 10.1007/3-540-48071-4_10.
    [4] 王缵, 田有亮, 李秋贤, 等. 基于信用模型的工作量证明算法[J]. 通信学报, 2018, 39(8): 185–198. doi: 10.11959/j.issn.1000-436x.2018138

    WANG Zuan, TIAN Youliang, LI Qiuxian, et al. Proof of work algorithm based on credit model[J]. Journal on Communications, 2018, 39(8): 185–198. doi: 10.11959/j.issn.1000-436x.2018138
    [5] LIU Yinqiu, WANG Kun, LIN Yun, et al. LightChain: A lightweight blockchain system for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3571–3581. doi: 10.1109/TII.2019.2904049
    [6] LI Xinyu, XU Jing, FAN Xiong, et al. Puncturable signatures and applications in proof-of-stake blockchain protocols[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3872–3885. doi: 10.1109/TIFS.2020.3001738
    [7] FAN Xinxin and CHAI Qi. Roll-DPoS: A randomized delegated proof of stake scheme for scalable blockchain-based internet of things systems[C]. The 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, New York, USA, 2018: 482–484. doi: 10.1145/3286978.3287023.
    [8] 谈森鹏, 杨超. 区块链DPoS共识机制的研究与改进[J]. 现代计算机, 2019(6): 11–14. doi: 10.3969/j.issn.1007-1423.2019.06.003

    TAN Senpeng and YANG Chao. Research and improvement of blockchain’s DPoS consensus mechanism[J]. Modern Computer, 2019(6): 11–14. doi: 10.3969/j.issn.1007-1423.2019.06.003
    [9] 黄嘉成, 许新华, 王世纯. 委托权益证明共识机制的改进方案[J]. 计算机应用, 2019, 39(7): 2162–2167. doi: 10.11772/j.issn.1001-9081.2018122527

    HUANG Jiacheng, XU Xinhua, and WANG Shichun. Improved scheme of delegated proof of stake consensus mechanism[J]. Journal of Computer Applications, 2019, 39(7): 2162–2167. doi: 10.11772/j.issn.1001-9081.2018122527
    [10] CASTRO M and LISKOV B. Practical byzantine fault tolerance[C]. The 3rd Symposium on Operating Systems Design and Implementation, New Orleans, USA, 1999: 173–186. doi: 10.1145/571637.571640.
    [11] 闵新平, 李庆忠, 孔兰菊, 等. 许可链多中心动态共识机制[J]. 计算机学报, 2018, 41(5): 1005–1020. doi: 10.11897/SP.J.1016.2018.01005

    MIN Xinping, LI Qiangzhong, KONG Lanju, et al. Permissioned blockchain dynamic consensus mechanism based multi-centers[J]. Chinese Journal of Computers, 2018, 41(5): 1005–1020. doi: 10.11897/SP.J.1016.2018.01005
    [12] HAN Runchao, SHAPIRO G, GRAMOLI V, et al. On the performance of distributed ledgers for internet of things[J]. Internet of Things, 2020, 10: 100087. doi: 10.1016/j.iot.2019.100087
    [13] D’AGOSTINO S F and TIMPANARO J P. Ripple protocol performance improvement: Small world theory applied to cross border payments[C]. XIX Simposio Argentino de Ingeniería de Software (ASSE)-JAIIO 47 (CABA, 2018), Buenos Aires, Argentina, 2018: 143–154. doi: 10915/70884.
    [14] WANG Miao, WANG Guiling, ZHANG Yujun, et al. A high-reliability multi-faceted reputation evaluation mechanism for online services[J]. IEEE Transactions on Services Computing, 2019, 12(6): 836–850. doi: 10.1109/TSC.2016.2638812
    [15] KANG Jiawen, YU Rong, HUANG Xumin, et al. Blockchain for secure and efficient data sharing in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4660–4670. doi: 10.1109/JIOT.2018.2875542
    [16] ZHAO Pincan, FU Yuchuan, LI Fan, et al. Blockchain-enabled targeted information dissemination framework in vehicular networks[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, USA, 2020: 1–5. doi: 10.1109/VTC2020-Fall49728.2020.9348576.
    [17] WANG Mingfu and KU H. Utilizing historical data for corporate credit rating assessment[J]. Expert Systems with Applications, 2021, 165: 113925. doi: 10.1016/j.eswa.2020.113925
    [18] ZHANG Xiaoyan, ZHU Shanying, HE Jianping, et al. Credit rating based real-time energy trading in microgrids[J]. Applied Energy, 2019, 236: 985–996. doi: 10.1016/j.apenergy.2018.12.013
    [19] ARUNKUMAR N, MOHAMMED M A, GHANI M K A, et al. K-means clustering and neural network for object detecting and identifying abnormality of brain tumor[J]. Soft Computing, 2019, 23(19): 9083–9096. doi: 10.1007/s00500-018-3618-7
    [20] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. doi: 10.1109/TFUZZ.2018.2796074
    [21] WANG Yuhao, CAI Shanbin, LIN Changlong, et al. Study of blockchains’s consensus mechanism based on credit[J]. IEEE Access, 2019, 7: 10224–10231. doi: 10.1109/ACCESS.2019.2891065
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  996
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-07-17
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回