高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于临空目标RCS预测的相控阵雷达资源自适应分配方法

段毅 谭贤四 曲智国 王红 谢振华

段毅, 谭贤四, 曲智国, 王红, 谢振华. 基于临空目标RCS预测的相控阵雷达资源自适应分配方法[J]. 电子与信息学报, 2022, 44(12): 4151-4158. doi: 10.11999/JEIT201061
引用本文: 段毅, 谭贤四, 曲智国, 王红, 谢振华. 基于临空目标RCS预测的相控阵雷达资源自适应分配方法[J]. 电子与信息学报, 2022, 44(12): 4151-4158. doi: 10.11999/JEIT201061
DUAN Yi, TAN Xiansi, QU Zhiguo, WANG Hong, XIE Zhenhua. Adaptive Resource Management Method for Phased Array Radar Based on RCS Prediction of Hypersonic Gliding Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4151-4158. doi: 10.11999/JEIT201061
Citation: DUAN Yi, TAN Xiansi, QU Zhiguo, WANG Hong, XIE Zhenhua. Adaptive Resource Management Method for Phased Array Radar Based on RCS Prediction of Hypersonic Gliding Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4151-4158. doi: 10.11999/JEIT201061

基于临空目标RCS预测的相控阵雷达资源自适应分配方法

doi: 10.11999/JEIT201061
基金项目: 国家社会科学基金(2020-SKJJ-C-035)
详细信息
    作者简介:

    段毅:男,博士,研究方向为临近空间高超声速目标特性、相控阵雷达资源管理

    谭贤四:男,博士生导师,教授,研究方向为预警探测体系论证

    曲智国:男,博士后,副教授,研究方向为预警监视、图像处理

    王红:女,博士生导师,教授,研究方向为陆基预警监视、雷达装备作战运用

    谢振华:男,硕士,工程师,研究方向为信息融合、雷达兵力作战使用

    通讯作者:

    段毅 1074146275@qq.com

  • 中图分类号: TN95

Adaptive Resource Management Method for Phased Array Radar Based on RCS Prediction of Hypersonic Gliding Vehicle

Funds: The National Social Science Foundation of China (2020-SKJJ-C-035)
  • 摘要: 针对相控阵雷达(PAR)探测临近空间高超声速目标(HGV)时雷达资源消耗过大、量测精度不高的问题,该文提出一种基于临空目标雷达截面积(RCS)预测的雷达资源自适应分配方法。该方法根据滑窗内目标状态与RCS信息,利用贝叶斯后验概率公式预测下一时刻目标RCS,并针对性地调整发射脉冲驻留时长,实现雷达资源的动态调整,使目标回波信号信噪比保持稳定,提高雷达跟踪性能。仿真实验表明,所提算法能较准确估计出目标RCS,进而自适应分配雷达资源,达到在不增加雷达资源消耗前提下提升跟踪精度的目的。
  • 图  1  HTV-2模型

    图  2  HTV-2雷达截面积

    图  3  预测步骤

    图  4  入射角误差示意图

    图  5  仿真场景

    图  6  RCS变化

    图  7  预测误差比较

    图  8  资源分配结果

    表  1  分离点参数

    高度(km)速度(m/s)速度倾角(°)攻角(°)倾侧角(°)速度方位角(°)经度(°)纬度(°)
    目标1505000015030014214.4
    目标2505000015030514413.3
    下载: 导出CSV

    表  2  雷达参数

    发射功率载频天线增益系统损耗噪声系数探测距离
    50 kW10 GHz45 dB5 dB2 dB500 km
    带宽最大占空比临空目标跟踪资源占比半功率波束宽度采样间隔极化方式
    10 MHz0.10.10.5 sVV
    下载: 导出CSV

    表  3  误差影响分析

    本文方法HM法
    $ \gamma {\text{ = }}0 $ $ \gamma {\text{ = 0}}{\text{.1}} $ $ \gamma {\text{ = }}0.2 $ $ \gamma {\text{ = }}0.3 $ $ \gamma {\text{ = 0}}{\text{.4}} $ $ \gamma {\text{ = 0}}{\text{.5}} $
    VPE0.01640.04230.07830.14920.19820.23980.2005
    APE0.00120.00860.03680.07430.14640.27660.1340
    下载: 导出CSV

    表  4  跟踪精度比较

    本文方法HM法固定法
    $ \gamma {\text{ = }}0 $ $ \gamma {\text{ = 0}}{\text{.1}} $ $ \gamma {\text{ = }}0.2 $ $ \gamma {\text{ = }}0.3 $ $ \gamma {\text{ = 0}}{\text{.4}} $ $ \gamma {\text{ = 0}}{\text{.5}} $
    MEC(103m)1.22241.39421.58521.83292.12272.38932.13923.5618
    下载: 导出CSV
  • [1] 洪延姬, 金星, 李小将. 等. 临近空间飞行器技术[M]. 北京: 国防工业出版社, 2012: 1–10.

    HONG Yanji, JIN Xing, LI Xiaojiang, et al. Near Space Vehicle Technology[M]. Beijing: National Defense Industry Press, 2012: 1–10.
    [2] XIA Rongsheng, CHEN Mou, WU Qingxian, et al. Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle[J]. Neurocomputing, 2020, 379: 41–52. doi: 10.1016/j.neucom.2019.10.038
    [3] 张光义. 相控阵雷达原理[M]. 北京: 国防工业出版社, 2009: 72–80.

    ZHANG Guangyi. Principles of Phased Array Radar[M]. Beijing: National Defense Industry Press, 2009: 72–80.
    [4] SEOK J, KABAMBA P, and GIRARD A. Task selection for radar resource management in dynamic environments[J]. The Journal of Engineering, 2018, 2018(1): 1–9. doi: 10.1049/joe.2017.0236
    [5] SEVERSON T A. Distributed optimization of resource allocation for search and track assignment with multifunction radars[D]. [Ph. D. dissertation], University of Maryland, 2013.
    [6] 张贞凯, 周建江, 汪飞, 等. 机载相控阵雷达射频隐身时最优搜索性能研究[J]. 宇航学报, 2011, 32(9): 2023–2028. doi: 10.3873/j.issn.1000-1328.2011.09.022

    ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Research on optimal search performance of airborne phased array radar for radio frequency stealth[J]. Journal of Astronautics, 2011, 32(9): 2023–2028. doi: 10.3873/j.issn.1000-1328.2011.09.022
    [7] KIM E H and PARK J. Dwell time optimization of alert-confirm detection for active phased array radars[J]. Journal of Electromagnetic Engineering and Science, 2019, 19(2): 107–114. doi: 10.26866/jees.2019.19.2.107
    [8] 陈怡君, 罗迎, 张群, 等. 基于认知ISAR成像的相控阵雷达资源自适应调度算法[J]. 电子与信息学报, 2014, 36(7): 1566–1572. doi: 10.3724/SP.J.1146.2013.00822

    CHEN Yijun, LUO Ying, ZHANG Qun, et al. Adaptive scheduling algorithm for phased array radar based on cognitive ISAR imaging[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1566–1572. doi: 10.3724/SP.J.1146.2013.00822
    [9] 孟迪, 张群, 罗迎, 等. 基于脉冲交错的数字阵列雷达任务优化调度算法[J]. 航空学报, 2017, 38(8): 167–176. doi: 10.7527/S1000-6893.2017.320930

    MENG Di, ZHANG Qun, LUO Ying, et al. An effective scheduling algorithm for digital array radar based on pulse interleaving[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 167–176. doi: 10.7527/S1000-6893.2017.320930
    [10] 孟迪, 张群, 罗迎, 等. 微动目标跟踪成像一体化的雷达资源优化调度算法[J]. 航空学报, 2018, 39(2): 321492. doi: 10.7527/S1000-6893.2017.21492

    MENG Di, ZHANG Qun, LUO Ying, et al. An optimal radar resource scheduling algorithm based on integrated tracking and imaging of micro-motion targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 321492. doi: 10.7527/S1000-6893.2017.21492
    [11] 田泰方, 张群, 陈怡君, 等. 基于二维资源管理的多功能雷达任务调度算法[J]. 航空学报, 2018, 39(12): 322313. doi: 10.7527/S1000-6893.2018.22313

    TIAN Taifang, ZHANG Qun, CHEN Yijun, et al. A task scheduling algorithm for multifunctional radar based on two-dimensional resource management[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322313. doi: 10.7527/S1000-6893.2018.22313
    [12] MIR H S and GUITOUNI A. Variable dwell time task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 463–472. doi: 10.1109/TASE.2013.2285014
    [13] Mir H S , Abdelaziz F B. Cyclic task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science & Engineering, 2012, 9(3): 529–537. doi: 10.1109/TASE.2012.2197857
    [14] ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006
    [15] ZHANG Haowei, XIE Junwei, ZHANG Zhaojian, et al. Variable scheduling interval task scheduling for phased array radar[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 937–946. doi: 10.21629/JSEE.2018.05.06
    [16] GILSON W H. Minimum power requirements of tracking[C]. Proceedings of the IEEE International Conference on Radar, Arlington, USA, 1990.
    [17] DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397–6408. doi: 10.1109/TSP.2017.2755591
    [18] 韩清华, 潘明海, 龙伟军. 基于机会约束规划的机会阵雷达功率资源管理算法[J]. 系统工程与电子技术, 2017, 39(3): 506–513. doi: 10.3969/j.issn.1001-506X.2017.03.08

    HAN Qinghua, PAN Minghai, and LONG Weijun. Power resource management algorithm of opportunistic array radar based on chance-constraint programming[J]. Systems Engineering and Electronics, 2017, 39(3): 506–513. doi: 10.3969/j.issn.1001-506X.2017.03.08
    [19] CHAVALI P and NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715–729. doi: 10.1109/TSP.2011.2174989
    [20] 严俊坤, 刘宏伟, 戴奉周, 等. 基于非线性机会约束规划的多基雷达系统稳健功率分配算法[J]. 电子与信息学报, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656

    YAN Junkun, LIU Hongwei, DAI Fengzhou, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics &Information Technology, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656
    [21] YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Robust chance constrained power allocation scheme for multiple target localization in colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 3946–3957. doi: 10.1109/TSP.2018.2841865
    [22] 张贞凯, 许姣, 田雨波. 多目标跟踪时的自适应功率分配算法[J]. 信号处理, 2017, 33(S1): 22–26. doi: 10.16798/j.issn.1003-0530.2017.3A.004

    ZHANG Zhenkai, XU Jiao, and TIAN Yubo. Adaptive power allocation algorithm for multiple target tracking[J]. Journal of Signal Processing, 2017, 33(S1): 22–26. doi: 10.16798/j.issn.1003-0530.2017.3A.004
    [23] 秦童, 戴奉周, 刘宏伟. 一种用于雷达资源管理的目标雷达截面积预测算法[J]. 电子与信息学报, 2015, 37(8): 1849–1854. doi: 10.11999/JEIT141466

    QIN Tong, DAI Fengzhou, and LIU Hongwei. Radar cross section prediction method for radar resource management[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1849–1854. doi: 10.11999/JEIT141466
    [24] MERTENS M and ULMKE M. Ground target tracking with RCS estimation utilizing probability hypothesis density filters[C]. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 2013.
    [25] 中国人民解放军总装备部军事训练教材编辑工作委员会. 再入物理[M]. 北京: 国防工业出版社, 2005: 40–98.

    Editorial Committee of Military Training Materials of the General Armament Department of the Chinese People's Liberation Army. Reentry Physics[M]. Beijing: National Defense Industry Press, 2005: 40–98.
    [26] HUBER P W. Hypersonic shock-heated flow parameters for velocities to 46, 000 feet per second and altitudes to 323, 000 feet[R]. R-163, 1963.
    [27] 张明友. 雷达系统[M]. 4版. 北京: 电子工业出版社, 2013: 192–208.

    ZHANG Mingyou. Microwave Technology and Antennas[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2013: 192–208.
    [28] 何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 2版. 北京: 电子工业出版社, 2009: 142–160.

    HE You, XIU Jianjuan, ZHANG Jingwei, et al. Radar Data Processing with Applications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2009: 142–160.
    [29] MARLEY C D and DRISCOLL J F. Heat transfer operability limits for an actively and passively cooled hypersonic vehicle[J]. Journal of Aircraft, 2018, 55(4): 1655–1674. doi: 10.2514/1.C034545
    [30] PEI Pei, FAN Shipeng, WANG Wei, et al. Online reentry trajectory optimization using modified sequential convex programming for hypersonic vehicle[J]. IEEE Access, 2021, 9: 23511–23525. doi: 10.1109/ACCESS.2021.3056517
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  140
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 修回日期:  2022-08-15
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-08-18
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回