高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Landweber迭代算法的欠采样恢复数字预失真技术

蔡天赋 李明玉 靳一 徐常志

蔡天赋, 李明玉, 靳一, 徐常志. 基于Landweber迭代算法的欠采样恢复数字预失真技术[J]. 电子与信息学报, 2021, 43(11): 3166-3173. doi: 10.11999/JEIT201051
引用本文: 蔡天赋, 李明玉, 靳一, 徐常志. 基于Landweber迭代算法的欠采样恢复数字预失真技术[J]. 电子与信息学报, 2021, 43(11): 3166-3173. doi: 10.11999/JEIT201051
Tianfu CAI, Mingyu LI, Yi JIN, Changzhi XU. An under-Sampling Restoration Digital Predistortion Technique Based on Landweber Iteration Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3166-3173. doi: 10.11999/JEIT201051
Citation: Tianfu CAI, Mingyu LI, Yi JIN, Changzhi XU. An under-Sampling Restoration Digital Predistortion Technique Based on Landweber Iteration Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3166-3173. doi: 10.11999/JEIT201051

基于Landweber迭代算法的欠采样恢复数字预失真技术

doi: 10.11999/JEIT201051
基金项目: 国家自然科学基金(61801377, 62001375),国家重点研发计划(2019YFB1803102)
详细信息
    作者简介:

    蔡天赋:男,1997年生,博士生,研究方向为超宽带数字预失真

    李明玉:男,1978年生,副教授/博士生导师,博士,研究方向为射频电路与系统

    靳一:男,1984年生,高级工程师,博士,研究方向为卫星通信与网络

    徐常志:男,1985年生,高级工程师,博士生,研究方向为卫星通信与网络

    通讯作者:

    李明玉 myli@cqu.edu.cn

  • 中图分类号: TN911.3

An under-Sampling Restoration Digital Predistortion Technique Based on Landweber Iteration Algorithm

Funds: The National Natural Science Foundation of China (61801377, 62001375), The National Key Research and Development Program (2019YFB1803102)
  • 摘要: 传统宽带数字预失真(DPD)为了更好地矫正功率放大器(PA)非线性特性,通常要求反馈通道带宽达到发送信号带宽的5倍,相应地要求更高采样率的模数转换器(ADC),这将导致数字预失真系统面临着硬件成本和能耗问题。针对这一问题,该文提出一种基于Landweber迭代算法的欠采样恢复(USR)数字预失真(Landweber-USR DPD)技术。这种以内外循环的方式进行处理,可将反馈通道带宽从理论要求的5倍降低至2倍,以良好的质量从欠采样的功放输出信号中恢复全频带的输出信号,使还原出的数据更接近真实的功放输出信号,以实现更好的预失真效果。实验选用基于单管氮化镓(GaN)器件的宽带F类功率放大器,在1.8 GHz工作频点下用5 MHz的长期演进(LTE)信号激励,反馈ADC速率分别设置为全采样速率(40 Msps)和欠采样速率(10 Msps)。实验结果充分证明了Landweber迭代算法恢复功放数据的可靠性以及Landweber-USR DPD技术的有效性,为宽带通信系统中数字预失真技术的工程实现提供了有效降低ADC采样率的思路和方法。
  • 图  1  USR反馈通道结构

    图  2  Landweber-USR预失真系统框图

    图  3  Landweber-USR算法流程

    图  4  实验平台现场图

    图  5  USR和Landweber-USR迭代变化情况

    图  6  归一化均方根误差对比

    图  7  预失真输出对比

    表  1  USR和Landweber-USR实验结果优缺点比较

    算法名称迭代次数还原效果NRMSE(%)线性化效果ACPR(dB)
    USR63.29–47.23
    Landweber-USR外循环62.04–48.92
    内循环50
    下载: 导出CSV
  • [1] ONOE S. 1.3 Evolution of 5G mobile technology toward 1 2020 and beyond[C]. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 23–28. doi: 10.1109/ISSCC.2016.7417891.
    [2] SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1201–1221. doi: 10.1109/JSAC.2017.2692307
    [3] NEININGER P, FRIESICKE C, KRAUSE S, et al. A sequential power amplifier at 3.5 GHz for 5G applications[C]. 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017: 284–287. doi: 10.23919/EuMC.2017.8230855.
    [4] RANGAN S, RAPPAPORT T S, and ERKIP E. Millimeter-wave cellular wireless networks: Potentials and challenges[J]. Proceedings of the IEEE, 2014, 102(3): 366–385. doi: 10.1109/JPROC.2014.2299397
    [5] KIM J and KONSTANTINOU K. Digital predistortion of wideband signals based on power amplifier model with memory[J]. Electronics Letters, 2001, 37(23): 1417–1418. doi: 10.1049/el:20010940
    [6] WOOD J. System-level design considerations for digital pre-distortion of wireless base station transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1880–1890. doi: 10.1109/TMTT.2017.2659738
    [7] GILABERT P L, VEGAS D, REN Zhixiong, et al. Design and digital predistortion linearization of a wideband outphasing amplifier supporting 200 MHz bandwidth[C]. 2020 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Antonio, USA, 2020: 46–49. doi: 10.1109/PAWR46754.2020.9035997.
    [8] SHI Bo. Digital Predistortion linearization of wideband transmitter for high data rate satellite communications[C]. 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019: 1589–1591. doi: 10.1109/APMC46564.2019.9038220.
    [9] 曹韬, 刘友江, 杨春, 等. 高效宽带包络跟踪系统电路性能优化及非线性行为校正[J]. 电子与信息学报, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275

    CAO Tao, LIU Youjiang, YANG Chun, et al. Circuits optimization and system linearization for high efficiency and wideband envelope tracking architecture[J]. Journal of Electronics &Information Technology, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275
    [10] FRANK W A. Sampling requirements for Volterra system identification[J]. IEEE Signal Processing Letters, 1996, 3(9): 266–268. doi: 10.1109/97.536597
    [11] 兰榕, 胡欣, 邹峰, 等. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105

    LAN Rong, HU Xin, ZOU Feng, et al. Research of low sampling frequency broadband digital predistortion with cyclostationary characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
    [12] KOEPPL H and SINGERL P. An efficient scheme for nonlinear modeling and predistortion in mixed-signal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(12): 1368–1372. doi: 10.1109/TCSII.2006.882232
    [13] ZHU Anding, DRAXLER P J, YAN J J, et al. Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(7): 1524–1534. doi: 10.1109/TMTT.2008.925211
    [14] CAO Wenhui, LI Yue, and ZHU Anding. Digital suppression of transmitter leakage in FDD RF transceivers: aliasing elimination and model selection[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1500–1511. doi: 10.1109/TMTT.2017.2772789
    [15] YU Chao, GUAN Lei, ZHU Erni, et al. Band-limited volterra series-based digital predistortion for wideband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 4198–4208. doi: 10.1109/TMTT.2012.2222658
    [16] MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897
    [17] WANG Haoyu, LIU Falin, and TAO Wei. Robust and fast iterative algorithm based on Levenberg-Marquardt and spectral extrapolation for wideband digital predistortion of RF power amplifiers[C]. 2015 IEEE International Wireless Symposium (IWS 2015), Shenzhen, China, 2015: 1–4. doi: 10.1109/IEEE-IWS.2015.7164579.
    [18] LIU Youjiang, YAN J J, DABAG H T, et al. Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2604–2617. doi: 10.1109/TMTT.2014.2360398
    [19] YU Chao, LU Qianyun, YIN Hang, et al. Linear-decomposition digital predistortion of power amplifiers for 5g ultrabroadband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2833–2844. doi: 10.1109/TMTT.2020.2975637
    [20] LI Yue, WANG Xiaoyu, and ZHU Anding. Sampling rate reduction for digital predistortion of broadband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 1054–1064. doi: 10.1109/TMTT.2019.2944813
    [21] WANG Peiyuan and ZHOU Haiyun. Adaptive Landweber image reconstruction with an optimal presetting method[C]. 2013 Ninth International Conference on Natural Computation (ICNC), Shenyang, China, 2013: 1289–1293. doi: 10.1109/ICNC.2013.6818177.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  867
  • HTML全文浏览量:  614
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-07-01
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回