高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于循环生成对抗网络的超分辨率重建算法研究

蔡文郁 张美燕 吴岩 郭嘉豪

蔡文郁, 张美燕, 吴岩, 郭嘉豪. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报, 2022, 44(1): 178-186. doi: 10.11999/JEIT201046
引用本文: 蔡文郁, 张美燕, 吴岩, 郭嘉豪. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报, 2022, 44(1): 178-186. doi: 10.11999/JEIT201046
CAI Wenyu, ZHANG Meiyan, WU Yan, GUO Jiahao. Research on Cyclic Generation Countermeasure Network Based Super-resolution Image Reconstruction Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(1): 178-186. doi: 10.11999/JEIT201046
Citation: CAI Wenyu, ZHANG Meiyan, WU Yan, GUO Jiahao. Research on Cyclic Generation Countermeasure Network Based Super-resolution Image Reconstruction Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(1): 178-186. doi: 10.11999/JEIT201046

基于循环生成对抗网络的超分辨率重建算法研究

doi: 10.11999/JEIT201046
基金项目: 国家自然科学基金(61801431),浙江省属高校基本科研业务费专项资金(GK209907299001-001)
详细信息
    作者简介:

    蔡文郁:男,1979年生,教授,研究方向为多媒体传感器网络

    张美燕:女,1983年生,副教授,研究方向为多视角超分辨重建

    吴岩:女,1997年生,硕士生,研究方向为图像超分辨重建

    郭嘉豪:男,1996年生,硕士生,研究方向为图像超分辨重建

    通讯作者:

    张美燕 meiyan19831106@163.com

  • 中图分类号: TN911.73

Research on Cyclic Generation Countermeasure Network Based Super-resolution Image Reconstruction Algorithm

Funds: The National Natural Science Foundation of China (61801431), The Fundamental Research Funds for the Provincial Universities of Zhejiang (GK209907299001-001)
  • 摘要: 为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network, MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络负责将低分辨率(LR)图像重建为高分辨率(HR)图像,退化网络负责将HR图像降采样为LR图像,LR判别器负责鉴别真实LR图像和通过退化网络降采样得到的LR图像,HR判别器负责鉴别真实HR图像和通过重建网络重建得到的HR图像,并且改进了CycleGAN原有的判别器判别方式和损失函数。实验结果验证了MRA-GAN模型与现有算法相比,在峰值信噪比(PSNR)和结构相似性(SSIM)等指标上都有所改进。
  • 图  1  MRA-GAN系统架构

    图  2  MRAN的残差组RG结构

    图  3  SRResnet, EDSR, MRA-GAN的残差块RB结构

    图  4  退化网络结构

    图  5  判别器网络结构

    图  6  DIV2K验证结果

    图  7  基准测试集测试结果

    表  1  测试参数设置

    测试参数参数值
    图像输入类型RGB
    图像输入大小48×48
    每批次图像数量16
    Adam指数衰减率${\beta _{\text{1}}}$0.9
    Adam指数衰减率${\beta _2}$0.999
    Adam参数$\varepsilon $10–8
    学习率10–4
    预训练轮数10
    下载: 导出CSV

    表  2  不同残差组数量实验结果

    残差组数量参数量PSNR (×4 Set5)SSIM (×4 Set5)
    8176032532.440.8892
    16320787732.720.8913
    32610298132.950.8920
    48899808532.970.8914
    641189318932.940.8921
    下载: 导出CSV

    表  3  实验结果对比

    方法倍率Set5Set14BSD100Urban100Manga109
    PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
    Bicubic×233.660.929930.240.868829.560.843126.880.840330.800.9339
    SRCNN36.660.954232.450.906731.360.887929.500.894635.600.9663
    VDSR37.530.959033.050.913031.900.896030.770.914037.220.9750
    EDSR38.110.960233.920.919532.320.901332.930.935139.100.9773
    MRA-GAN38.590.958934.160.925633.990.915834.250.932939.050.9781
    Bicubic×330.3927.5527.550.774227.210.738524.460.734926.950.8556
    SRCNN32.750.909029.300.821528.410.786326.240.798930.480.9117
    VDSR33.670.921029.780.832028.830.799027.140.829032.010.9340
    EDSR34.650.928030.520.846229.250.809328.800.865334.170.9476
    MRA-GAN34.980.926531.220.868630.700.835030.540.867634.450.9531
    Bicubic×426.700.780323.870.657724.260.639921.170.619320.50.6986
    SRCNN29.010.850426.850.751326.900.710124.520.722127.450.8412
    VDSR31.130.883027.950.768027.290.726025.180.754028.830.8707
    EDSR32.350.890928.440.801627.710.742026.640.803330.760.9064
    MRA-GAN32.970.890429.010.819828.220.777628.310.808932.130.9164
    Bicubic×824.400.658023.100.566023.670.548020.740.516021.470.6500
    SRCNN25.330.690023.760.591024.130.566021.290.544022.460.6950
    VDSR25.930.724024.260.614024.490.583021.700.571023.160.7250
    EDSR26.960.776224.910.642024.810.598522.510.622124.690.7841
    MRA-GAN27.560.779825.460.665625.540.609423.320.649325.850.7986
    下载: 导出CSV
  • [1] 陈嘉琪, 刘祥梅, 李宁, 等. 一种超分辨SAR图像水域分割算法及其应用[J]. 电子与信息学报, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366

    CHEN Jiaqi, LIU Xiangmei, LI Ning, et al. A high-precision water segmentation algorithm for SAR image and its application[J]. Journal of Electronics &Information Technology, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366
    [2] TAO Huanjie and LU Xiaobo. Contour-based smoky vehicle detection from surveillance video for alarm systems[J]. Signal, Image and Video Processing, 2019, 13(2): 217–225. doi: 10.1007/s11760-018-1348-z
    [3] 王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    [4] 陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947

    CHEN Shuzhen, CAO Shipeng, CUI Meiyue, et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics &Information Technology, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947
    [5] YANG Chenxue, YE Mao, TANG Song, et al. Semi-supervised low-rank representation for image classification[J]. Signal, Image and Video Processing, 2017, 11(1): 73–80. doi: 10.1007/s11760-016-0895-4
    [6] DING Chunhui, BAO Tianlong, KARMOSHI S, et al. Single sample per person face recognition with KPCANet and a weighted voting scheme[J]. Signal, Image and Video Processing, 2017, 11(7): 1213–1220. doi: 10.1007/s11760-017-1077-8
    [7] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. Learning a single convolutional super-resolution network for multiple degradations[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3262–3271.
    [8] HE Chao, CHEN Zhenxue, and LIU Chengyun. Salient object detection via images frequency domain analyzing[J]. Signal, Image and Video Processing, 2016, 10(7): 1295–1302. doi: 10.1007/s11760-016-0954-x
    [9] HOU H and ANDREWS H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508–517. doi: 10.1109/TASSP.1978.1163154
    [10] SCHULTZ R R and STEVENSON R L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(3): 233–242. doi: 10.1109/83.287017
    [11] LI Xin and ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521–1527. doi: 10.1109/83.951537
    [12] IRANI M and PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3): 231–239. doi: 10.1016/1049-9652(91)90045-L
    [13] STARK H and OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715–1726. doi: 10.1364/JOSAA.6.001715
    [14] SCHULTZ R R and STEVENSON R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996–1011. doi: 10.1109/83.503915
    [15] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199.
    [16] DONG Chao, LOY C C, and TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 391–407.
    [17] KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654.
    [18] SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    [19] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [20] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114.
    [21] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1132–1140.
    [22] ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]. Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 294–310.
    [23] SHOCHER A, COHEN N, and IRANI M. Zero-Shot super-resolution using deep internal learning[C]. 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 3118–3126.
    [24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [25] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. https://arxiv.org/pdf/1511.06434.pdf, 2016.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  435
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-10-18
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回