高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自组织增量-图卷积神经网络的金相图半监督学习

李维刚 谌竟成 谢璐 赵云涛

李维刚, 谌竟成, 谢璐, 赵云涛. 基于自组织增量-图卷积神经网络的金相图半监督学习[J]. 电子与信息学报, 2021, 43(11): 3301-3308. doi: 10.11999/JEIT201029
引用本文: 李维刚, 谌竟成, 谢璐, 赵云涛. 基于自组织增量-图卷积神经网络的金相图半监督学习[J]. 电子与信息学报, 2021, 43(11): 3301-3308. doi: 10.11999/JEIT201029
Weigang LI, Jingcheng SHEN, Lu XIE, Yuntao ZHAO. Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3301-3308. doi: 10.11999/JEIT201029
Citation: Weigang LI, Jingcheng SHEN, Lu XIE, Yuntao ZHAO. Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3301-3308. doi: 10.11999/JEIT201029

基于自组织增量-图卷积神经网络的金相图半监督学习

doi: 10.11999/JEIT201029
基金项目: 国家自然科学基金(51774219)
详细信息
    作者简介:

    李维刚:1977年生,教授,博士生导师,研究方向为人工智能与机器学习算法

    谌竟成:1997年生,硕士生,研究方向为图像处理

    谢璐:1996年生,博士生,研究方向为语义分割

    赵云涛:1983年生,副教授,研究方向为3维点云数据处理

    通讯作者:

    李维刚 liweigang.luck@foxmail.com

  • 中图分类号: TN911.73

Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network

Funds: The National Natural Science Foundation of China (51774219)
  • 摘要: 采用深度学习对钢铁材料显微组织图像分类,需要大量带标注信息的训练集。针对训练集人工标注效率低下问题,该文提出一种新的融合自组织增量神经网络和图卷积神经网络的半监督学习方法。首先,采用迁移学习获取图像数据样本的特征向量集合;其次,通过引入连接权重策略的自组织增量神经网络(WSOINN)对特征数据进行学习,获得其拓扑图结构,并引入胜利次数进行少量人工节点标注;然后,搭建图卷积网络(GCN)挖掘图中节点的潜在联系,利用Dropout手段提高网络的泛化能力,对剩余节点进行自动标注进而获得所有金相图的分类结果。针对从某国家重点实验室收集到的金相图数据,比较了在不同人工标注比例下的自动分类精度,结果表明:在图片标注量仅为传统模型12%时,新模型的分类准确度可达到91%。
  • 图  1  WSOINN-GCN模型框架

    图  2  金相图样本

    图  3  利用VGG16卷积模块提取金相图的特征

    图  4  3层图卷积网络结构

    图  5  不同$p$, ${W_{\max }}$下节点数

    图  6  不同$p$, ${W_{\max }}$下连接矩阵稀疏程度

    图  7  MLP

    表  1  标注率为0.3时,不同p, Wmax值下剩余节点标注精度

    ${{{W}}_{{{\max}}}}$, ${{p}}$
    20, 100%2, 10%15, 45%10, 5%4, 30%17, 70%
    $n$286294300308440474
    $a$720324734688640946
    Acc_w(%)859384908988
    Acc_r(%)708180758885
    下载: 导出CSV

    表  2  不同节点标注率情况下剩余节点自动标注精度(%)

    节点标注率(rate)WSOINN- GCNWSOINN- MLP
    有Dropout无Dropout有Dropout无Dropout
    0.183807776
    0.289888281
    0.393938684
    0.495929190
    0.593949190
    0.697999797
    0.797999997
    下载: 导出CSV

    表  3  不同节点标注率情况下所有金相图分类精度(%)

    节点标注率(rate)WSOINN-GCNWSOINN- MLP
    有Dropout无Dropout有Dropout无Dropout
    0.181817479
    0.288878180
    0.391918281
    0.492918985
    0.592928892
    0.690949092
    0.790948992
    下载: 导出CSV

    表  4  节点标注率为0.3时,不同类别金相图的精确率与召回率(%)

    金相图类别精确率召回率
    下贝氏体9092
    低碳板条马氏体9393
    珠光体9992
    贝氏体9373
    铁素体100100
    高碳片状马氏体7497
    下载: 导出CSV

    表  5  选择30%标注,不同方法的所有图片自动分类效果

    VGG-ICAMSOINNMLPWSOINN-GCNWSOINN-MLP
    人工标注量(张)7307307308888
    训练时间(min)240112.52.5
    分类精度(%)7439519182
    下载: 导出CSV

    表  6  分类精度达到90%,不同方法所需的标注量及训练时间

    VGG-ICAMSOINNMLPWSOINN-GCNWSOINN-MLP
    人工标注量(张)15801702170288115
    训练时间(min)4201.51.52.52.5
    下载: 导出CSV
  • [1] ZHAO H, WYNNE B P, and PALMIERE E J. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel[J]. Materials Characterization, 2017, 123: 339–348. doi: 10.1016/j.matchar.2016.11.024
    [2] YANG Youwen, HE Chongxian, E Dianyu, et al. Mg bone implant: Features, developments and perspectives[J]. Materials & Design, 2020, 185: 108259. doi: 10.1016/j.matdes.2019.108259
    [3] TERASAKI H, MIYAHARA Y, HAYASHI K, et al. Digital identification scheme for steel microstructures in low-carbon steel[J]. Materials Characterization, 2017, 129: 305–312. doi: 10.1016/j.matchar.2017.05.021
    [4] PANCHAL J H, KALIDINDI S R, and MCDOWELL D L. Key computational modeling issues in Integrated Computational Materials Engineering[J]. Computer-Aided Design, 2013, 45(1): 4–25. doi: 10.1016/j.cad.2012.06.006
    [5] LU Xiaochong, ZHANG Xu, SHI Mingxing, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper[J]. International Journal of Plasticity, 2019, 113: 52–73. doi: 10.1016/j.ijplas.2018.09.007
    [6] WANG Hongda, RIVENSON Y, JIN Yiyin, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1): 103–110. doi: 10.1038/s41592-018-0239-0
    [7] DECOST B L, LEI Bo, FRANCIS T, et al. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel[J]. Microscopy and Microanalysis, 2019, 25(1): 21–29. doi: 10.1017/S1431927618015635
    [8] PAULY J, BRITZ D, and MÜCKLICH F. Advanced microstructure classification using data mining methods[C]. In TMP - 5th International Conference on TermoMechanical Processing, Milan, Italy, 2016: 12–25.
    [9] CHOWDHURY A, KAUTZ E, YENER B, et al. Image driven machine learning methods for microstructure recognition[J]. Computational Materials Science, 2016, 123: 176–187. doi: 10.1016/j.commatsci.2016.05.034
    [10] AZIMI S M, BRITZ D, ENGSTLER M, et al. Advanced steel microstructural classification by deep learning methods[J]. Scientific Reports, 2018, 8(1): 2128. doi: 10.1038/s41598-018-20037-5
    [11] 李维刚, 谌竟成, 范丽霞, 等. 基于卷积神经网络的钢铁材料微观组织自动辨识[J]. 钢铁研究学报, 2020, 32(1): 33–43. doi: 10.13228/j.boyuan.issn1001-0963.20190147

    LI Weigang, SHEN Jingcheng, FAN Lixia, et al. Automatic identification of microstructure of iron and steel material based on convolutional neural network[J]. Journal of Iron and Steel Research, 2020, 32(1): 33–43. doi: 10.13228/j.boyuan.issn1001-0963.20190147
    [12] LI Bentian and PI Dechang. Network representation learning: A systematic literature review[J]. Neural Computing and Applications, 2020, 32(21): 16647–16679. doi: 10.1007/s00521-020-04908-5
    [13] 康世泽, 吉立新, 张建朋. 一种基于图注意力网络的异质信息网络表示学习框架[J]. 电子与信息学报, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034

    KANG Shize, JI Lixin, and ZHANG Jianpeng. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
    [14] 李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 待发表. doi: 10.11999/JEIT200735.

    LI Shibao, ZHANG Yiwei, LIU Jianhang, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics & Information Technology, To be published. doi: 10.11999/JEIT200735.
    [15] ORTEGA A, FROSSARD P, KOVAČEVIĆ J, et al. Graph signal processing: Overview, challenges, and applications[J]. Proceedings of the IEEE, 2018, 106(5): 808–828. doi: 10.1109/JPROC.2018.2820126
    [16] HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[J]. arXiv preprint arXiv: 1706.02216, 2017.
    [17] KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv: 1609.02907, 2016.
    [18] CHEN Jie, MA Tengfei, and XIAO Cao. FastGCN: Fast learning with graph convolutional networks via importance sampling[J]. arXiv preprint arXiv: 1801.10247, 2018.
    [19] SHEN Furao and HASEGAWA O. An incremental network for on-line unsupervised classification and topology learning[J]. Neural Networks, 2006, 19(1): 90–106. doi: 10.1016/j.neunet.2005.04.006
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1181
  • HTML全文浏览量:  460
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-03-21
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回