高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应空间异常的目标跟踪

姜文涛 刘晓璇 涂潮 金岩

姜文涛, 刘晓璇, 涂潮, 金岩. 自适应空间异常的目标跟踪[J]. 电子与信息学报, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025
引用本文: 姜文涛, 刘晓璇, 涂潮, 金岩. 自适应空间异常的目标跟踪[J]. 电子与信息学报, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025
JIANG Wentao, LIU Xiaoxuan, TU Chao, JIN Yan. Adaptive Spatial and Anomaly Target Tracking[J]. Journal of Electronics & Information Technology, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025
Citation: JIANG Wentao, LIU Xiaoxuan, TU Chao, JIN Yan. Adaptive Spatial and Anomaly Target Tracking[J]. Journal of Electronics & Information Technology, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025

自适应空间异常的目标跟踪

doi: 10.11999/JEIT201025
基金项目: 国家自然科学基金(61172144),辽宁省自然科学基金(20170540426),辽宁省教育厅基金(LJYL049)
详细信息
    作者简介:

    姜文涛:男,1986年生,副教授,研究方向为图像与视觉计算、模式识别与人工智能

    刘晓璇:女,1996年生,硕士生,研究方向为图像与视觉计算、模式识别与人工智能

    涂潮:男,1993年生,硕士生,研究方向为图像与视觉计算、模式识别与人工智能

    金岩:男,1996年生,硕士生,研究方向为图像与视觉计算、模式识别与人工智能

    通讯作者:

    刘晓璇 1481167384@qq.com

  • 中图分类号: TN911.73; TP391.4

Adaptive Spatial and Anomaly Target Tracking

Funds: The National Natural Science Foundation of China (61172144), The National Natural Science Foundation of Liaoning Province (20170540426), The Foundation of Education Department of Liaoning Province (LJYL049)
  • 摘要: 为了解决判别式空间正则项的目标跟踪算法在遮挡、旋转等因素干扰下失跟率较高的问题,该文提出一种自适应空间异常的目标跟踪算法。首先,在目标函数中加入自适应空间正则项,既缓解了边界效应带来的影响,又提高了滤波器对目标和背景区域的分辨能力;其次,根据每一帧的响应值计算验证分数,分析跟踪结果的可信度和异常情况;最后为目标模型和响应图模型的更新速率实现动态取值。大量实验结果表明,自适应空间异常的目标跟踪算法能够较好地处理背景模糊、形状变化等多种异常情况,具有较高的跟踪性能。
  • 图  1  视频序列异常分析示意图

    图  2  参数取值示意图

    图  3  自适应模型更新前后的验证分数曲线

    图  4  总体框架图

    图  5  各种算法在部分序列上的跟踪结果对比

    图  6  各种算法在数据集OTB100上的对比曲线

    表  1  各种跟踪算法在数据集OTB100上各种属性的精确率得分

    本文STRCFSRDCFStapleBACFECOARCFASRCFAutoTrack
    光照变化0.8400.8350.7540.7750.8240.8000.7680.7770.776
    尺度变化0.8650.8380.7360.7210.7690.7570.7270.7310.744
    遮挡0.8580.8120.7260.7240.7400.7200.6830.6910.713
    形变0.8470.8390.7120.7470.7730.7650.7450.7560.743
    运动模糊0.8570.8220.7410.6920.7610.7360.7350.7280.766
    快速运动0.8430.8030.7630.7100.8070.7890.7450.7330.770
    平面内旋转0.8350.8130.7210.7670.7960.7810.7250.7360.774
    平面外旋转0.8780.8480.7250.7360.7850.7670.7230.7550.751
    超视野0.8320.7710.6210.6680.7650.7480.6710.6770.723
    复杂背景0.8540.8750.7380.7480.8300.8000.7870.7610.758
    低分辨率0.8100.7460.6310.6100.7390.7410.7070.5820.764
    下载: 导出CSV

    表  2  各种跟踪算法在数据集OTB100上各种属性的成功率得分

    本文STRCFSRDCFStapleBACFECOARCFASRCFAutoTrack
    光照变化0.8020.7970.6970.7080.7970.7760.7490.7490.746
    尺度变化0.8150.7500.6500.5960.6950.6890.6460.6890.648
    遮挡0.8220.7630.6700.6530.7070.6890.6520.6870.661
    形变0.7880.7440.6400.6560.7050.6930.6940.7150.686
    运动模糊0.8400.7840.7080.6390.7340.7270.7110.7110.731
    快速运动0.8150.7470.7100.6450.7660.7600.7090.7090.718
    平面内旋转0.7920.7300.6300.6680.7140.7040.6510.6860.667
    平面外旋转0.8390.7740.6350.6430.7180.6970.6500.7150.663
    超视野0.7710.6950.5610.5480.6940.6890.6380.6710.655
    复杂背景0.8050.8260.6600.6870.7960.7660.7710.7540.702
    低分辨率0.7340.6590.5620.4720.6640.6630.6370.5600.668
    下载: 导出CSV

    表  3  各种跟踪算法在数据集OTB100上平均跟踪速度(帧/s)

    本文STRCFSRDCFStapleBACFECOARCFASRCFAutoTrack
    14.913.33.961.416.927.912.619.816.2
    下载: 导出CSV
  • [1] 卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006

    LU Huchuan, LI Peixia, and WANG Dong. Visual object tracking: A survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006
    [2] 葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091–1107. doi: 10.11834/jig.170604

    GE Baoyi, ZUO Xianzhang, and HU Yongjiang. Review of visual object tracking technology[J]. Journal of Image and Graphics, 2018, 23(8): 1091–1107. doi: 10.11834/jig.170604
    [3] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277

    MENG Lu and YANG Xu. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277
    [4] 段建民, 马学峥, 柳新. 基于MFAPC的无人驾驶汽车路径跟踪方法[J]. 计算机工程, 2019, 45(6): 6–11, 20. doi: 10.19678/j.issn.1000-3428.0052439

    DUAN Jianmin, MA Xuezheng, and LIU Xin. Path tracking method of unmanned vehicle based on MFAPC[J]. Computer Engineering, 2019, 45(6): 6–11, 20. doi: 10.19678/j.issn.1000-3428.0052439
    [5] 姜文涛, 刘万军, 袁姮. 基于软特征理论的目标跟踪研究[J]. 计算机学报, 2016, 39(7): 1334–1355. doi: 10.11897/SP.J.1016.2016.01334

    JIANG Wentao, LIU Wanjun, and YUAN Heng. Research of object tracking based on soft feature theory[J]. Chinese Journal of Computers, 2016, 39(7): 1334–1355. doi: 10.11897/SP.J.1016.2016.01334
    [6] 李娜, 吴玲风, 李大湘. 基于相关滤波的长期跟踪算法[J]. 模式识别与人工智能, 2018, 31(10): 899–908. doi: 10.16451/j.cnki.issn1003-6059.201810004

    LI Na, WU Lingfeng, and LI Daxiang. Long-term tracking algorithm based on correlation filter[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(10): 899–908. doi: 10.16451/j.cnki.issn1003-6059.201810004
    [7] 刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39(6): 0615004. doi: 10.3788/AOS201939.0615004

    LIU Wanjun, SUN Hu, and JIANG Wentao. Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Optica Sinica, 2019, 39(6): 0615004. doi: 10.3788/AOS201939.0615004
    [8] 姜文涛, 涂潮, 刘万军. 背景与方向感知的相关滤波跟踪[J]. 中国图象图形学报, 2021, 26(3): 527–541. doi: 10.11834/jig.200139

    JIANG Wentao, TU Chao, and LIU Wanjun. Background and direction-aware correlation filter tracking[J]. Journal of Image and Graphics, 2021, 26(3): 527–541. doi: 10.11834/jig.200139
    [9] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/CVPR.2010.5539960.
    [10] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715. doi: 10.1007/978-3-642-33765-9_50.
    [11] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    [12] DANELLJAN M, HÄGER G, KHAN F M, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4310–4318. doi: 10.1109/ICCV.2015.490.
    [13] GALOOGAHI H K, SIM T, and LUCEY S. Correlation filters with limited boundaries[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4630–4638. doi: 10.1109/CVPR.2015.7299094.
    [14] GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[C]. Proceeding of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1144–1152. doi: 10.1109/ICCV.2017.129.
    [15] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515.
    [16] DAI Ke’nan, WANG Dong, LU Huchuan, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 4665–4674. doi: 10.1109/CVPR.2019.00480.
    [17] LI Yiming, FU Changhong, DING Fangqiang, et al. AutoTrack: Towards high-performance visual tracking for UAV with automatic spatio-temporal regularization[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11920–11929. doi: 10.1109/CVPR42600.2020.01194.
    [18] HUANG Ziyuan, FU Changhong, LI Yiming, et al. Learning aberrance repressed correlation filters for real-time UAV tracking[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2891–2900. doi: 10.1109/ICCV.2019.00298.
    [19] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2010, 3(1): 1–122. doi: 10.1561/2200000016
    [20] 马燕青. 求解约束优化问题的增广拉格朗日函数法[D]. [硕士论文], 重庆师范大学, 2013.

    MA Yanqing. Augmented lagrangian function methods for solving constrained optimization problems[D]. [Master dissertation], Chongqing Normal University, 2013.
    [21] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409. doi: 10.1109/CVPR.2016.156.
    [22] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6931–6939. doi: 10.1109/CVPR.2017.733.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  596
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-08-14
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回