高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非对称监督深度离散哈希的图像检索

顾广华 霍文华 苏明月 付灏

顾广华, 霍文华, 苏明月, 付灏. 基于非对称监督深度离散哈希的图像检索[J]. 电子与信息学报, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988
引用本文: 顾广华, 霍文华, 苏明月, 付灏. 基于非对称监督深度离散哈希的图像检索[J]. 电子与信息学报, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988
Guanghua GU, Wenhua HUO, Mingyue SU, Hao FU. Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988
Citation: Guanghua GU, Wenhua HUO, Mingyue SU, Hao FU. Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988

基于非对称监督深度离散哈希的图像检索

doi: 10.11999/JEIT200988
基金项目: 国家自然科学基金(62072394),河北省自然科学基金(F2021203019)
详细信息
    作者简介:

    顾广华:男,1979年生,博士,教授,研究方向为图像检索、图像分类和图像识别

    霍文华:女,1995年生,硕士生,研究方向为图像检索和深度哈希

    苏明月:女,1996年生,硕士生,研究方向为图像检索和深度哈希

    付灏:男,1996年生,硕士生,研究方向为跨模态检索

    通讯作者:

    顾广华 guguanghua@ysu.edu.cn

  • 中图分类号: TN911.73; TP391.4

Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval

Funds: The National Natural Science Foundation of China (62072394), The Natural Science Foundation of Hebei Province (F2021203019)
  • 摘要: 哈希广泛应用于图像检索任务。针对现有深度监督哈希方法的局限性,该文提出了一种新的非对称监督深度离散哈希(ASDDH)方法来保持不同类别之间的语义结构,同时生成二进制码。首先利用深度网络提取图像特征,根据图像的语义标签来揭示每对图像之间的相似性。为了增强二进制码之间的相似性,并保证多标签语义保持,该文设计了一种非对称哈希方法,并利用多标签二进制码映射,使哈希码具有多标签语义信息。此外,引入二进制码的位平衡性对每个位进行平衡,鼓励所有训练样本中的–1和+1的数目近似。在两个常用数据集上的实验结果表明,该方法在图像检索方面的性能优于其他方法。
  • 图  1  ASDDH模型体系结构

    图  2  CIFAR-10数据集上的超参数影响

    表  1  两个数据集上不同方法的MAP

    方法CIFAR-10 (bit)NUS-WIDE (bit)
    1224324812243248
    ASDDH0.7630.7710.7810.7850.8340.8510.8680.874
    DSDH*[14]0.7230.7340.7490.7510.7630.7800.7840.801
    DPSH[13]0.7130.7270.7440.7570.7520.7900.7940.812
    DTSH[27]0.7100.7500.7650.7740.7730.8080.8120.824
    DQN[23]0.5540.5580.5640.5800.7680.7760.7830.792
    DHN[24]0.5550.5940.6030.6210.7080.7350.7480.758
    NINH[26]0.5520.5660.5580.5810.6740.6970.7130.715
    CNNH[25]0.4390.5110.5090.5220.6110.6180.6250.608
    FastH+CNN[21]0.5530.6070.6190.6360.7790.8070.8160.825
    SDH+CNN[10]0.4780.5570.5840.5920.7800.8040.8150.824
    KSH+CNN[9]0.4880.5390.5480.5630.7680.7860.7900.799
    LFH+CNN[22]0.2080.2420.2660.3390.6950.7340.7390.759
    SPLH+CNN[20]0.2990.3300.3350.3300.7530.7750.7830.786
    ITQ+CNN[5]0.2370.2460.2550.2610.7190.7390.7470.756
    SH+CNN[19]0.1830.1640.1610.1610.6210.6160.6150.612
    下载: 导出CSV

    表  2  不同网络的MAP

    方法CIFAR-10 (bit)
    12243648
    ASDDH0.7630.7710.7810.785
    ASDDH-V160.7830.7920.7980.810
    ASDDH-RN500.7940.8030.8100.822
    ASDDH-RNX500.8100.8270.8390.841
    DSDH0.7230.7340.7490.751
    DSDH-V160.7410.7520.7630.774
    DSDH--RN500.7550.7670.7700.786
    DSDH-RNX500.7810.7920.7940.798
    下载: 导出CSV
  • [1] SHEN Fumin, ZHOU Xiang, YANG Yang, et al. A fast optimization method for general binary code learning[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5610–5621. doi: 10.1109/TIP.2016.2612883
    [2] QIANG Haopeng, WAN Yuan, XIANG Lun, et al. Deep semantic similarity adversarial hashing for cross-modal retrieval[J]. Neurocomputing, 2020, 400: 24–33. doi: 10.1016/j.neucom.2020.03.032
    [3] 彭天强, 栗芳. 基于深度卷积神经网络和二进制哈希学习的图像检索方法[J]. 电子与信息学报, 2016, 38(8): 2068–2075. doi: 10.11999/JEIT151346

    PENG Tianqiang and LI Fang. Image retrieval based on deep convolutional neural networks and binary hashing learning[J]. Journal of Electronics &Information Technology, 2016, 38(8): 2068–2075. doi: 10.11999/JEIT151346
    [4] DATAR M, IMMORLICA N, INDYK P, et al Locality-sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the 20th Annual Symposium on Computational Geometry, New York, USA, 2004: 253–262. doi: 10.1145/997817.997857.
    [5] GONG Yunchao and LAZEBNIK S. Iterative quantization: A procrustean approach to learning binary codes[C]. Proceedings of CVPR 2011, Colorado Springs, USA, 2011: 817–824. doi: 10.1109/CVPR.2011.5995432.
    [6] LIU Wei, MU Cun, SANJIV K, et al. Discrete graph hashing[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3419–3427.
    [7] LU Xiaoqiang, ZHENG Xiangtao, and LI Xuelong. Latent semantic minimal hashing for image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(1): 355–368. doi: 10.1109/TIP.2016.2627801
    [8] DAI Bo, GUO Ruiqi, KUMAR S, et al. Stochastic generative hashing[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 913–922.
    [9] LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2074–2081. doi: 10.1109/CVPR.2012.6247912.
    [10] SHEN Fumin, SHEN Chunhua, LIU Wei, et al. Supervised discrete hashing[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 37–45. doi: 10.1109/CVPR.2015.7298598.
    [11] SHI Xiaoshuang, XING Fuyong, XU Kaidi, et al. Asymmetric discrete graph hashing[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2541–2547.
    [12] 陈昌红, 彭腾飞, 干宗良. 基于深度哈希算法的极光图像分类与检索方法[J]. 电子与信息学报, 2020, 42(12): 3029–3036. doi: 10.11999/JEIT190984

    CHEN Changhong, PENG Tengfei, and GAN Zongliang. Aurora image classification and retrieval method based on deep hashing algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(12): 3029–3036. doi: 10.11999/JEIT190984
    [13] LI Wujun, WANG Sheng, and KANG Wangcheng. Feature learning based deep supervised hashing with pairwise labels[C]. Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1711–1717.
    [14] GUI Jie, LIU Tongliang, SUN Zhenan, et al. Fast supervised discrete hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 490–496. doi: 10.1109/TPAMI.2017.2678475
    [15] JIANG Qingyuan, CUI Xue, and LI Wujun. Deep discrete supervised hashing[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5996–6009. doi: 10.1109/TIP.2018.2864894
    [16] MA Lei, LI Hongliang, WU Qingbo, et al. Multi-task learning for deep semantic hashing[C]. Proceedings of 2018 IEEE Visual Communications and Image Processing, Taichung, China, 2018: 1–4. doi: 10.1109/VCIP.2018.8698627.
    [17] YANG Zhan, RAYMOND O I, SUN Wuqing, et al. Asymmetric deep semantic quantization for image retrieval[J]. IEEE Access, 2019, 7: 72684–72695. doi: 10.1109/ACCESS.2019.2920712
    [18] MOHAMMAD N and FLEET D J. Minimal loss hashing for compact binary codes[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, USA, 2011: 353–360.
    [19] WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, Canada, 2008: 1753–1760. doi: 10.5555/2981780.2981999.
    [20] WANG Jun, KUMAR S, and CHANG S F. Sequential projection learning for hashing with compact codes[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 1127–1134.
    [21] LIN Guosheng, SHEN Chunhua, SHI Qinfeng, et al. Fast supervised hashing with decision trees for high-dimensional data[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1971–1978. doi: 10.1109/CVPR.2014.253.
    [22] ZHANG Peichao, ZHANG Wei, LI Wujun, et al. Supervised hashing with latent factor models[C]. Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 2014: 173–182. doi: 10.1145/2600428.2609600.
    [23] CAO Yue, LONG Mingsheng, WANG Jianmin, et al. Deep quantization network for efficient image retrieval[C]. Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 3457–3463.
    [24] ZHU Han, LONG Mingsheng, WANG Jianmin, et al. Deep hashing network for efficient similarity retrieval[C]. Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2415–2421.
    [25] XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]. Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 2156–2162.
    [26] LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3270–3278. doi: 10.1109/CVPR.2015.7298947.
    [27] WANG Xiaofang, SHI Yi, and KITANI K M. Deep supervised hashing with triplet labels[C]. Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2016: 70–84. doi: 10.1007/978-3-319-54181-5_5.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  756
  • HTML全文浏览量:  732
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-10-25
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回