高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于leg-by-leg机动的两级采样被动跟踪方法

奚畅 蔡志明 袁骏

奚畅, 蔡志明, 袁骏. 基于leg-by-leg机动的两级采样被动跟踪方法[J]. 电子与信息学报, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975
引用本文: 奚畅, 蔡志明, 袁骏. 基于leg-by-leg机动的两级采样被动跟踪方法[J]. 电子与信息学报, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975
Chang XI, Zhiming CAI, Jun YUAN. Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975
Citation: Chang XI, Zhiming CAI, Jun YUAN. Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975

基于leg-by-leg机动的两级采样被动跟踪方法

doi: 10.11999/JEIT200975
详细信息
    作者简介:

    奚畅:男,1992年生,博士生,研究方向为水声信号与信息处理

    蔡志明:男,1962年生,教授,博士生导师,研究方向为水声信号与信息处理

    袁骏:男,1979年生,讲师,研究方向为水声信号与信息处理

    通讯作者:

    奚畅 xichangwxx@163.com

  • 中图分类号: TN929.3; TB566

Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver

  • 摘要: 针对被动声呐方位-频率观测情况下粒子滤波检测前跟踪算法中高维采样效率低的问题,该文提出一种利用leg-by-leg机动可观测性特点的两级采样方法。首先,对leg-by-leg机动的可观测性进行分析;然后,建立极坐标系下的目标运动状态模型,以粒子相对观测站的距离和法向速度均匀分布为准则,提出将极坐标系下的目标状态向量映射至直角坐标系的方法;最后,为改善滤波收敛性,提出根据粒子的空间分布特征自适应地调整过程噪声协方差矩阵。仿真结果表明,对于典型的水下目标跟踪场景,所提方法可使滤波收敛率增大约47.6%,距离估计误差减小约329 m,滤波收敛时间缩短约450 s。
  • 图  1  leg-by-leg机动模式示意图

    图  2  相对速度示意图

    图  3  粒子分布示意图

    图  4  相对运动态势

    图  5  目标方位及频率变化情况

    图  6  初始时刻Lofar谱仿真结果

    图  7  目标距离估计误差CRLB

    图  8  各粒子数情况的滤波收敛率

    图  9  各粒子数情况的距离估计误差

    图  10  距离估计误差随时间变化情况

    图  11  观测站和目标航迹

    图  12  初始时刻Lofar谱实测结果

    图  13  目标距离估计误差

  • [1] HO K C and CHAN Y T. An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 809–822. doi: 10.1109/TSP.2005.861776
    [2] LEE M H, MOON J H, KIM I S, et al. Pre-processing faded measurements for bearing-and-frequency target motion analysis[J]. International Journal of Control, Automation, and Systems, 2008, 6(3): 424–433.
    [3] SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference, Arlington, USA, 2001: 3753–3760.
    [4] RUTTEN M G, GORDON N J, and MASKELL S. Efficient particle-based track-before-detect in Rayleigh noise[C]. The 7th International Conference on Information Fusion, Stockholm, Sweden, 2004.
    [5] BESKOS A, CRISAN D, and JASRA A. On the stability of sequential Monte Carlo methods in high dimensions[J]. The Annals of Applied Probability, 2014, 24(4): 1396–1445.
    [6] CHEN Z. Bayesian filtering: From Kalman filters to particle filters, and beyond[R]. Hamilton: McMaster University, 2003.
    [7] DAUM F and HUANG J. Curse of dimensionality and particle filters[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2003: 1979–1993.
    [8] SEPTIER F, PANG S K, CARMI A, et al. On MCMC-based particle methods for Bayesian filtering: Application to multitarget tracking[C]. The 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Netherland Antilles, 2009: 1280–1287.
    [9] 梁新华, 潘泉, 杨峰, 等. 基于两级采样的粒子滤波检测前跟踪算法[J]. 系统工程与电子技术, 2011, 33(9): 1921–1926. doi: 10.3969/j.issn.1001-506X.2011.09.02

    LIANG Xinhua, PAN Quan, YANG Feng, et al. Particle filter track-before-detect algorithm based on tow-hierarchy sampling[J]. Systems Engineering and Electronics, 2011, 33(9): 1921–1926. doi: 10.3969/j.issn.1001-506X.2011.09.02
    [10] 梁新华, 梁彦, 潘泉, 等. 一种基于局部搜索采样的粒子滤波检测前跟踪算法[J]. 控制与决策, 2012, 27(12): 1912–1916. doi: 10.13195/j.cd.2012.12.155.liangxh.019

    LIANG Xinhua, LIANG Yan, PAN Quan, et al. A particle filter track-before-detect algorithm based on local search sampling[J]. Control and Decision, 2012, 27(12): 1912–1916. doi: 10.13195/j.cd.2012.12.155.liangxh.019
    [11] CASELLA G and ROBERT C P. Rao-Blackwellisation of sampling schemes[J]. Biometrika, 1996, 83(1): 81–94. doi: 10.1093/biomet/83.1.81
    [12] LI W and JIA Y. Rao-Blackwellised unscented particle filtering for jump Markov non-linear systems: An ${H_\infty }$ approach[J]. IET Signal Processing, 2011, 5(2): 187–193. doi: 10.1049/iet-spr.2009.0306
    [13] AMOR N, CHEBBI S, and BOUAYNAYA N. A comparative study of particle filter, PMCMC and mixture particle filter methods for tracking in high dimensional state spaces[C]. The 3rd International Conference on Automation, Control, Engineering and Computer Science, 2016: 846–850.
    [14] BESKOS A, CRISAN D, JASRA A, et al. A stable particle filter for a class of high-dimensional state-space models[J]. Advances in Applied Probability, 2017, 49(1): 24–48. doi: 10.1017/apr.2016.77
    [15] BUGALLO M F and DJURIĆ P M. Particle filtering in high-dimensional systems with Gaussian approximations[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 8013–8017.
    [16] FAWCETT J A. TMA Performance for Towed Arrays of Low Manoeuvrability[M]. CHAN Y T. Underwater Acoustic Data Processing. Dordrecht: Springer, 1989: 467–472.
    [17] LE CADRE J E and JAUFFRET C. Discrete-time observability and estimability analysis for bearings-only target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 178–201. doi: 10.1109/7.570737
    [18] JAUFFRET C and PILLON D. Observability in passive target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1290–1300. doi: 10.1109/7.543850
    [19] RISTIC B and ARULAMPALAM M S. Tracking a manoeuvring target using angle-only measurements: Algorithms and performance[J]. Signal Processing, 2003, 83(6): 1223–1238. doi: 10.1016/S0165-1684(03)00042-2
    [20] BECKER K. A general approach to TMA observability from angle and frequency measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 487–494. doi: 10.1109/7.481293
    [21] 夏佩伦, 李长文. 水下目标跟踪与攻击新理论[M]. 北京: 国防工业出版社, 2016: 86–91.

    XIA Peilun and LI Changwen. New Theory of Underwater Target Tracking and Attack[M]. Beijing: National Defense Industry Press, 2016: 86–91.
    [22] 杜选民, 周胜增, 高源. 声纳阵列信号处理技术[M]. 北京: 电子工业出版社, 2018: 165–166.

    DU Xuanmin, ZHOU Shengzeng, and GAO Yuan. Array Signal Processing Techniques for Sonar[M]. Beijing: Electronic Industry Press, 2018: 165–166.
    [23] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 3版. 北京: 高等教育出版社, 2001.
    [24] AIDALA V J and HAMMEL S E. Utilization of modified polar coordinates for bearings-only tracking[J]. IEEE Transactions on Automatic Control, 1983, 28(3): 283–294. doi: 10.1109/TAC.1983.1103230
    [25] ARULAMPALAM S and RISTIC B. Comparison of the particle filter with range-parameterized and modified polar EKFs for angle-only tracking[C]. SPIE 4048, Signal and Data Processing of Small Targets 2000, Orlando, United States, 2000: 288–299. doi: 10.1117/12.391985.
  • 加载中
图(13)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  429
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 修回日期:  2021-05-31
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回