[1] |
WANG Keping, WANG Zhigong, LEI Xuemei, et al. A low-loss image-reject mixer using source follower isolation method for DRM/DAB tuner applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58(11): 729–733. doi: 10.1109/TCSII.2011.2168014
|
[2] |
WANG Keping, QIU Lei, KOO J, et al. Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1628–1639. doi: 10.1109/JSSC.2018.2801829
|
[3] |
WANG Keping, OTIS B, and WANG Zhigong. A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 174–176. doi: 10.1109/LMWC.2017.2787064
|
[4] |
吴大正. 信号与线性系统分析[M]. 3版. 北京: 高等教育出版社, 2000: 28–33.
|
[5] |
LIN C M, LIN H K, LAI Y A, et al. A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 95–97. doi: 10.1109/LMWC.2008.2011330
|
[6] |
ISSAKOV V, THIEDE A, VERWEYEN L, et al. 0.5–25 GHz inductorless single-ended resistive mixer in 0.13 μm CMOS[J]. Electronics Letters, 2009, 45(2): 108–110. doi: 10.1049/el20092599
|
[7] |
LEE J G, PARK G H, BYEON C W, et al. 60 GHz Up-conversion mixer with wide IF bandwidth using transformer-based negative feedback in 65-nm CMOS[C]. 2019 IEEE Asia-Pacific Microwave Conference, Singapore, 2019: 732–734. doi: 10.1109/APMC46564.2019.9038419.
|
[8] |
HUANG C Y, WU K L, HU R, et al. Analysis of wide-IF-band 65 nm-CMOS mixer for 77–110 GHz radio-astronomical receiver design[J]. IET Circuits, Devices & Systems, 2019, 13(3): 406–413. doi: 10.1049/iet-cds.2018.5269
|
[9] |
CHIANG P Y, SU C W, LUO S Y, et al. Wide-IF-band CMOS mixer design[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(4): 831–840. doi: 10.1109/TMTT.2010.2041575
|
[10] |
TSAI H T, TSENG P L, CHANG Chewei, et al. Design of wide-IF-Band CMOS mixer with LO multiplier[C]. 2013 Asia-Pacific Microwave Conference Proceedings, Seoul, 2013: 176–178. doi: 10.1109/APMC.2013.6695085.
|
[11] |
NGUYEN T T, RIDDLE A, FUJII K, et al. Development of wideband and high IIP3 millimeter-wave mixers[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 3071–3078. doi: 10.1109/TMTT.2017.2669042
|
[12] |
ZHANG Tiedi, LIU Xiansuo, WANG Yuehang, et al. Mixing it up: A double-balanced mixer with wide RF and IF bandwidth[J]. IEEE Microwave Magazine, 2018, 19(1): 106–111. doi: 10.1109/MMM.2017.2759659
|
[13] |
YANG Geliang, CHEN Rui, and WANG Keping. A CMOS Balun with common ground and artificial dielectric compensation achieving 79.5% fractional bandwidth and <2° phase imbalance[C]. 2020 IEEE/MTT-S International Microwave Symposium, Los Angeles, USA, 2020: 1319–1322. doi: 10.1109/IMS30576.2020.9223981.
|
[14] |
YANG Geliang, TANG Kai, and WANG Zhigong. 3.6–8.1 GHz CMOS balun with 1.8° in-band phase difference by using capacitive balance compensation technique[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1548–1551. doi: 10.1002/mop.32228
|
[15] |
YANG Geliang, WANG Zhigong, LI Zhiqun, et al. Balance-compensated asymmetric marchand baluns on silicon for MMICs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 391–393. doi: 10.1109/LMWC.2014.2313719
|
[16] |
YU Y H, YANG Y S, and CHEN Y J E. A compact wideband CMOS low noise amplifier with gain flatness enhancement[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 502–509. doi: 10.1109/JSSC.2010.2040111
|