高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽中频CMOS下变频器单片

杨格亮 李斌

杨格亮, 李斌. 宽中频CMOS下变频器单片[J]. 电子与信息学报, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957
引用本文: 杨格亮, 李斌. 宽中频CMOS下变频器单片[J]. 电子与信息学报, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957
Geliang YANG, Bin LI. Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957
Citation: Geliang YANG, Bin LI. Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957

宽中频CMOS下变频器单片

doi: 10.11999/JEIT200957
基金项目: 河北省省级科技计划(18960202D)
详细信息
    作者简介:

    杨格亮:男,1982年生,博士、高级工程师,研究方向为微波毫米波单片集成电路设计

    李斌:男,1972年生,研究员级高级工程师,研究方向为通信与信息处理

    通讯作者:

    杨格亮 gelsyang@qq.com

  • 中图分类号: TN773

Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC

Funds: S&T Program of Hebei (18960202D)
  • 摘要: 该文介绍了一种工作于毫米波频段的宽中频(IF)下变频器。该下变频器基于无源双平衡的设计架构,片上集成了射频(RF)和本振(LO)巴伦。为了优化无源下变频器的增益、带宽和隔离度性能,电路设计中引入了栅极感性化技术。测试结果表明,该下变频器的中频带宽覆盖0.5~12 GHz。在频率为30 GHz、幅度为4 dBm的LO信号驱动下,电路的变频增益为–8.5~–5.5 dB。当固定IF为0.5 GHz、LO幅度为4 dBm时,变频增益随25~45 GHz的RF信号在–7.9~–5.9 dB范围内变化,波动幅度为2 dB。LO-IF, LO-RF, RF-IF的隔离度测试结果分别优于42, 50, 43 dB。该下变频器芯片采用TSMC 90 nm CMOS工艺设计,芯片面积为0.4 mm2
  • 图  1  宽中频无源双平衡下变频器设计架构

    图  2  宽中频无源双平衡下变频器芯片照片

    图  3  片上巴伦的3-D结构

    图  4  巴伦的损耗和输入匹配仿真

    图  5  巴伦的不平衡度仿真

    图  6  栅极感性化电路及其等效模型

    图  7  变频增益随栅极偏置电压变化曲线

    图  8  变频增益随本振功率变化曲线

    图  9  变频增益随RF变化曲线

    图  10  变频增益随IF变化曲线

    图  11  单边带噪声系数随RF变化曲线

    图  12  端口隔离度随RF变化曲线

    图  13  输入3阶交调点测试结果

    表  1  宽带下变频器单片性能总结

    参考工艺RF带宽(GHz)IF带宽(GHz)PLO(dBm)增益(dB)隔离度(dB)IIP3(dBm)芯片面积(mm2)
    文献[8]65 nm CMOS77~1102~19510N/A–150.86
    文献[9]0.13 μm CMOS8.7~17.4DC~8.7514.5>20–5.51.3
    文献[10]0.18 μm CMOS17.4~26.1DC~8.75–1>4061.82
    本文90 nm CMOS25~450.5~124–5.5~-8.5>427.60.4
    下载: 导出CSV
  • [1] WANG Keping, WANG Zhigong, LEI Xuemei, et al. A low-loss image-reject mixer using source follower isolation method for DRM/DAB tuner applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58(11): 729–733. doi: 10.1109/TCSII.2011.2168014
    [2] WANG Keping, QIU Lei, KOO J, et al. Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1628–1639. doi: 10.1109/JSSC.2018.2801829
    [3] WANG Keping, OTIS B, and WANG Zhigong. A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 174–176. doi: 10.1109/LMWC.2017.2787064
    [4] 吴大正. 信号与线性系统分析[M]. 3版. 北京: 高等教育出版社, 2000: 28–33.
    [5] LIN C M, LIN H K, LAI Y A, et al. A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 95–97. doi: 10.1109/LMWC.2008.2011330
    [6] ISSAKOV V, THIEDE A, VERWEYEN L, et al. 0.5–25 GHz inductorless single-ended resistive mixer in 0.13 μm CMOS[J]. Electronics Letters, 2009, 45(2): 108–110. doi: 10.1049/el20092599
    [7] LEE J G, PARK G H, BYEON C W, et al. 60 GHz Up-conversion mixer with wide IF bandwidth using transformer-based negative feedback in 65-nm CMOS[C]. 2019 IEEE Asia-Pacific Microwave Conference, Singapore, 2019: 732–734. doi: 10.1109/APMC46564.2019.9038419.
    [8] HUANG C Y, WU K L, HU R, et al. Analysis of wide-IF-band 65 nm-CMOS mixer for 77–110 GHz radio-astronomical receiver design[J]. IET Circuits, Devices & Systems, 2019, 13(3): 406–413. doi: 10.1049/iet-cds.2018.5269
    [9] CHIANG P Y, SU C W, LUO S Y, et al. Wide-IF-band CMOS mixer design[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(4): 831–840. doi: 10.1109/TMTT.2010.2041575
    [10] TSAI H T, TSENG P L, CHANG Chewei, et al. Design of wide-IF-Band CMOS mixer with LO multiplier[C]. 2013 Asia-Pacific Microwave Conference Proceedings, Seoul, 2013: 176–178. doi: 10.1109/APMC.2013.6695085.
    [11] NGUYEN T T, RIDDLE A, FUJII K, et al. Development of wideband and high IIP3 millimeter-wave mixers[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 3071–3078. doi: 10.1109/TMTT.2017.2669042
    [12] ZHANG Tiedi, LIU Xiansuo, WANG Yuehang, et al. Mixing it up: A double-balanced mixer with wide RF and IF bandwidth[J]. IEEE Microwave Magazine, 2018, 19(1): 106–111. doi: 10.1109/MMM.2017.2759659
    [13] YANG Geliang, CHEN Rui, and WANG Keping. A CMOS Balun with common ground and artificial dielectric compensation achieving 79.5% fractional bandwidth and <2° phase imbalance[C]. 2020 IEEE/MTT-S International Microwave Symposium, Los Angeles, USA, 2020: 1319–1322. doi: 10.1109/IMS30576.2020.9223981.
    [14] YANG Geliang, TANG Kai, and WANG Zhigong. 3.6–8.1 GHz CMOS balun with 1.8° in-band phase difference by using capacitive balance compensation technique[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1548–1551. doi: 10.1002/mop.32228
    [15] YANG Geliang, WANG Zhigong, LI Zhiqun, et al. Balance-compensated asymmetric marchand baluns on silicon for MMICs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 391–393. doi: 10.1109/LMWC.2014.2313719
    [16] YU Y H, YANG Y S, and CHEN Y J E. A compact wideband CMOS low noise amplifier with gain flatness enhancement[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 502–509. doi: 10.1109/JSSC.2010.2040111
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  890
  • HTML全文浏览量:  481
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-03-25
  • 网络出版日期:  2021-04-13
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回