高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全双工中继协作下的移动边缘计算系统能耗优化算法

徐勇军 谷博文 谢豪 陈前斌

徐勇军, 谷博文, 谢豪, 陈前斌. 全双工中继协作下的移动边缘计算系统能耗优化算法[J]. 电子与信息学报, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937
引用本文: 徐勇军, 谷博文, 谢豪, 陈前斌. 全双工中继协作下的移动边缘计算系统能耗优化算法[J]. 电子与信息学报, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937
Yongjun XU, Bowen GU, Hao XIE, Qianbin CHEN. Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937
Citation: Yongjun XU, Bowen GU, Hao XIE, Qianbin CHEN. Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937

全双工中继协作下的移动边缘计算系统能耗优化算法

doi: 10.11999/JEIT200937
基金项目: 国家自然科学基金(61601071),重庆市自然科学基金(cstc2019jcyj-xfkxX0002),重庆市研究生科研创新项目(CYS20251, CYS20253)
详细信息
    作者简介:

    徐勇军:男,1986年生,副教授,硕士生导师,研究方向为移动边缘计算、云计算、异构无线网络资源分配

    谷博文:男,1996年生,硕士生,研究方向为中继通信、移动边缘计算、无线资源分配

    谢豪:男,1997年生,硕士生,研究方向为异构无线网络资源分配、移动边缘计算

    陈前斌:男,1967年生,教授,博士生导师,研究方向为无线通信、多媒体信息传输与处理

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 1)基于自干扰消除技术,本文假设干扰消除残留项可以建模为噪声功率。
  • 中图分类号: TN915

Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems

Funds: The National Natural Science Foundation of China (61601071), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Graduate ScientifiC Research Innovation Project of Chongqing (CYS20251, CYS20253)
  • 摘要: 为缓解终端设备处理大数据量、低时延业务的压力,该文提出一种基于全双工中继的移动边缘计算网络资源分配算法。首先,在满足计算任务时延约束、用户最大计算能力、用户和中继的最大发射功率约束条件下,考虑中继选择与子载波分配因子、用户任务卸载系数、用户与中继的传输功率的联合优化,建立了系统总能耗最小化问题。其次,利用交替迭代和变量代换的方法,将原非凸问题分解为两个凸优化子问题,并利用内点法和拉格朗日对偶原理分别进行求解。仿真结果表明,所提算法具有较低的能量消耗。
  • 图  1  全双工中继移动边缘计算网络系统模型

    图  2  任务计算时隙

    图  3  系统总能量消耗迭代收敛图

    图  4  系统总能耗与用户任务数据量和时延的关系

    图  5  系统总能耗与用户任务时延的关系

    图  6  系统总能耗与用户任务数据量的关系

     算法1 基于交替迭代的资源分配算法
     1.初始化系统参数:$ p_n^{\max } $,$ P_m^{\max } $, $ T_n^{\max } $, $ F_n^{\max } $, $ \kappa $, $ B $, $K$,$ h_{n,m}^k $, $ {\sigma ^2} $, $ g_m^k $, $f_n^{\text{M}}$, ${S_n}$, ${C_n}$, $\varphi $, $\sigma _{{\text{SI}}}^2$;定义交替迭代算法收敛精度$\ell $;初始化交替迭
      代次数$t$;定义外层最大迭代次数${T_{\max }}$;定义Dinkelbach迭代算法收敛精度$\zeta $以及相应最大迭代次数${L_{\max }}$;初始化梯度迭代次数$l$,初始化
      $q = 0$;
     2.给定$ \alpha _{n,m}^k(t) $和$ \bar p_{n,m}^k(t) $,利用内点法求解问题式(18),得到$ x_{n,m}^k(t + 1) $;
     3.给定$ x_{n,m}^k(t + 1) $,给定q,求解问题式(20),得到当前最优值$ \bar p_{n,m}^k(l) $,$ \alpha _{n,m}^k(l) $;
     4.当$ \left| {x_{n,m}^k(t + 1){S_n}\bar p_{n,m}^k(l) - q\bar R_{n,m}^k(l)} \right| \ge \zeta $,或者$l \le {L_{\max }}$;
     5.令Flag=0,更新$l = l + 1$;
     6.将$q$更新为$ q = {{x_{n,m}^k(t + 1){S_n}\bar p_{n,m}^k(l)} \mathord{\left/ {\vphantom {{x_{n,m}^k(t + 1){S_n}\bar p_{n,m}^k(l)} {\bar R_{n,m}^k(l)}}} \right. } {\bar R_{n,m}^k(l)}} $,结束并执行步骤3;
     7.当$ \left| {x_{n,m}^k(t + 1){S_n}\bar p_{n,m}^k(l) - q\bar R_{n,m}^k(l)} \right| \le \zeta $,或者$l = {L_{\max }}$;
     8.令Flag=1,更新并输出$ \alpha _{n,m}^{}(t + 1){\text{ = }}\alpha _{n,m}^l(l) $,$ \bar p_{n,m}^k(t + 1) = \bar p_{n,m}^k(l) $;
     9.当$ \left| {\{ E_n^{\text{L}}(t + 1) + \alpha _{n,m}^k(t + 1)E_n^{{\text{UT}}}(t + 1)\} - \{ E_n^{\text{L}}(t) + \alpha _{n,m}^k(t)E_n^{{\text{UT}}}(t)\} } \right| \ge \ell $,或者$t \le {T_{\max }}$;
     10.更新$t = t + 1$,执行步骤2;
     11.结束并输出。
    下载: 导出CSV

    表  1  仿真参数

    参数参数
    $\phi $/(${\text{cycles} } \cdot {\text{bi} }{ {\text{t} }^{ {{ - 1} } } }$)40$\kappa $${10^{ - 24}}$
    $F_n^{\max }$/cycles${10^9}$$ P_m^{\max } $/W5
    $ f_n^M $/cycles${10^{10}}$$ p_n^{\max } $/W1
    $K$5$ \chi $3
    ${\sigma ^2}$/mW${10^{ - 6}}$$ B $/Hz${10^6}$
    下载: 导出CSV
  • [1] LIU Yaqiong, PENG Mugen, SHOU Guochu, et al. Toward edge intelligence: Multiaccess edge computing for 5G and internet of things[J]. IEEE Internet of Things Journal, 2020, 7(8): 6722–6747. doi: 10.1109/JIOT.2020.3004500
    [2] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [3] 谢人超, 廉晓飞, 贾庆民, 等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39(11): 138–155. doi: 10.11959/j.issn.1000-436x.2018215

    XIE Renchao, LIAN Xiaofei, JIA Qingmin, et al. Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39(11): 138–155. doi: 10.11959/j.issn.1000-436x.2018215
    [4] 李国权, 徐勇军, 陈前斌. 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 41(2): 957–964. doi: 10.11999/JEIT190419

    LI Guoquan, XU Yongjun, and CHEN Qianbin. Interference efficiency-based base station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 41(2): 957–964. doi: 10.11999/JEIT190419
    [5] ZHANG Jing, XIA Weiwei, YAN Feng, et al. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing[J]. IEEE Access, 2018, 6: 19324–19337. doi: 10.1109/ACCESS.2018.2819690
    [6] WANG Jingrong, LIU Kaiyang, and PAN Jianping. Online UAV-mounted edge server dispatching for mobile-to-mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(2): 1375–1386. doi: 10.1109/JIOT.2019.2954798
    [7] QIAN Liping, FENG Anqi, HUANG Yupin, et al. Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 2806–2816. doi: 10.1109/JIOT.2018.2875046
    [8] SUN Haijian, ZHOU Fuhui, and HU R Q. Joint offloading and computation energy efficiency maximization in a mobile edge computing system[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3052–3056. doi: 10.1109/tvt.2019.2893094
    [9] SONG Zhengyu, LIU Yuanwei, and SUN Xin. Joint radio and computational resource allocation for NOMA-based mobile edge computing in heterogeneous networks[J]. IEEE Communications Letters, 2018, 22(12): 2559–2562. doi: 10.1109/LCOMM.2018.2875984
    [10] REN Jinke, YU Guanding, HE Yinghui, et al. Collaborative cloud and edge computing for latency minimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5031–5044. doi: 10.1109/TVT.2019.2904244
    [11] CHEN Xihan, CAI Yunlong, SHI Qingjiang, et al. Efficient resource allocation for relay-assisted computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2020, 7(3): 2452–2468. doi: 10.1109/JIOT.2019.2957728
    [12] XIE Biyuan, ZHANG Qi, and QIN Jiayin. Joint optimization of cooperative communication and computation in two-way relay MEC systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4596–4600. doi: 10.1109/TVT.2020.2973292
    [13] LAN Yanwen, WANG Xiaoxiang, WANG Dongyu, et al. Mobile-edge computation offloading and resource allocation in heterogeneous wireless networks[C]. Proceedings of 2019 IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 2019: 1–6. doi: 10.1109/WCNC.2019.8885793.
    [14] ALAM S, MARK J W, and SHEN X S. Relay selection and resource allocation for multi-user cooperative OFDMA networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2193–2205. doi: 10.1109/TWC.2013.032113.120652
    [15] WEN Dingzhu, YU Guanding, LI Rongpeng, et al. Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1494–1507. doi: 10.1109/TWC.2016.2647593
    [16] CHEN Lei, YU F R, JI Hong, et al. Distributed virtual resource allocation in small-cell networks with full-duplex self-backhauls and virtualization[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5410–5423. doi: 10.1109/TVT.2015.2469149
    [17] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
    [18] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [19] HUANG Kaizhi and ZHANG Bo. Robust secure transmission for wireless information and power transfer in heterogeneous networks[J]. IET Communications, 2019, 13(4): 411–422. doi: 10.1049/iet-com.2018.5529
    [20] CROUZEIX J P and FERLAND J A. Algorithms for generalized fractional programming[J]. Mathematical Programming, 1991, 52(1/3): 191–207. doi: 10.1007/BF01582887
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  413
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2021-09-23
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回