高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多路源信号的单通道盲去卷积算法研究

刘婷 尹甜甜 龚真颖 郭一娜

刘婷, 尹甜甜, 龚真颖, 郭一娜. 面向多路源信号的单通道盲去卷积算法研究[J]. 电子与信息学报, 2022, 44(1): 230-236. doi: 10.11999/JEIT200933
引用本文: 刘婷, 尹甜甜, 龚真颖, 郭一娜. 面向多路源信号的单通道盲去卷积算法研究[J]. 电子与信息学报, 2022, 44(1): 230-236. doi: 10.11999/JEIT200933
LIU Ting, YIN Tiantian, GONG Zhenying, GUO Yina. Research on Single-channel Blind Deconvolution Algorithm for Multi-source Signals[J]. Journal of Electronics & Information Technology, 2022, 44(1): 230-236. doi: 10.11999/JEIT200933
Citation: LIU Ting, YIN Tiantian, GONG Zhenying, GUO Yina. Research on Single-channel Blind Deconvolution Algorithm for Multi-source Signals[J]. Journal of Electronics & Information Technology, 2022, 44(1): 230-236. doi: 10.11999/JEIT200933

面向多路源信号的单通道盲去卷积算法研究

doi: 10.11999/JEIT200933
基金项目: 国家自然科学基金(61301250),国家留学基金委地区合作与高层次人才培养项目 [2020]1417,山西省重点研发计划资助项目(201803D421035),山西省自然科学优秀青年基金(201901D211313),山西省回国留学人员科研教研资助项目(HGKY2019080)
详细信息
    作者简介:

    刘婷:女,1991年生,博士生,研究方向为盲信号处理

    尹甜甜:女,1994年生,硕士生,研究方向为智能信息处理

    龚真颖:男,1996年生,硕士生,研究方向为机器视觉与智能信息处理

    郭一娜:女,1981年生,博士生导师,研究方向为盲信号处理、混合式脑机接口

    通讯作者:

    郭一娜 zulibest@163.com

  • 中图分类号: TN911.7; TP391

Research on Single-channel Blind Deconvolution Algorithm for Multi-source Signals

Funds: The National Natural Science Foundation of China (61301250), China Scholarship Council[2020]1417, The Key Research and Development Project of Shanxi Province (201803D421035), The Natural Science Foundation for Young Scientists of Shanxi Province (201901D211313), Research, Teaching and Research Funding Project of Shanxi Province for Returned Overseas Students (HGKY2019080)
  • 摘要: 传统的单通道盲去卷积的方法存在仅能从混合信号中分离出2路源信号的局限,考虑到以上问题,该文提出一种基于优化的深度卷积生成对抗网络的单通道盲去卷积算法(SCBDC),能从1路混合信号中分离和解卷积出3路以上的独立源信号和混合矩阵。该文实验在汉字和遮挡图像数据集上进行,随机选择4路信号与混合矩阵进行卷积混合,实验结合峰值信噪比(PSNR)和信号相关性指标来评价分离的效果,结果显示,该算法能够有效地分离出多路源信号并去卷积。
  • 图  1  部分汉字及遮挡数据集

    图  2  SCBDC 方法进行图像盲去卷积的结果

    图  3  S-D算法与SCBDC 算法进行图像盲去卷积的对比结果

    表  1  SCBDC算法

     输出:源信号$ \bar s $和混合矩阵${\bar {\boldsymbol{F}}_{} }$
     1: 选择满足高斯分布N(0,1)的m个100维噪声样本z1, z2, ···, zm;
     2: 来自实际数据的m个样本s1, s2, ···, sm;
     3: 训练 ODCGAN
     一定程度地增加判别器的梯度来更新D:
     $\nabla {\theta _d}\dfrac{1}{m}\displaystyle\sum\limits_{i = 1}^m {\left[ {\lg D\left( { {{\boldsymbol{s}}_i} } \right) + \lg\left( {1 - D\left( {G\left( { {{\boldsymbol{z}}_i} } \right)} \right)} \right)} \right]}$
     一定程度地降低生成器的梯度来更新G:
     $\nabla {\theta _g}\dfrac{1}{m}\displaystyle\sum\limits_{i = 1}^m {\lg\left( {1 - D\left( {G\left( { {{\boldsymbol{z}}_i} } \right)} \right)} \right)}$
     4: 选择来自高斯分布N(0,1)的随机m个样本z1, z2, ···, zm和混合
      矩阵F1, F2, ···, Fm;
     5: 迭代
     计算$\bar {\boldsymbol{X}}$:
     $\bar {\boldsymbol{X}} = \displaystyle\sum\limits_{i = 1}^m {\left( { {{\boldsymbol{F}}_m} * G\left( { {{\boldsymbol{z}}_m} } \right)} \right)}$
     按照式(12)计算梯度$\nabla {\boldsymbol{\varPhi}}$
     使用adam优化器更新${\boldsymbol{\varPhi}}$
    下载: 导出CSV

    表  2  不同初始化的PSNR值(dB)

    初始化PSNR
    15.4
    158.6
    4010.4
    5010.4
    下载: 导出CSV

    表  3  不同算法的PSNR值(dB)

    算法PSNR
    NMF[18]9.8
    S-D[17]13.5
    SCBDC15.6
    下载: 导出CSV

    表  4  目标信号与源信号的互相关性值

    ${{\boldsymbol{S}}_1}$和$ {\bar {\boldsymbol{S}}_1} $$ {{\boldsymbol{S}}_2} $和$ {\bar {\boldsymbol{S}}_2} $$ {{\boldsymbol{S}}_3} $和$ {\bar {\boldsymbol{S}}_3} $$ {{\boldsymbol{S}}_4} $和$ {\bar {\boldsymbol{S}}_4} $平均值
    第1行0.92450.96130.95230.72860.8917
    第2行0.75990.96980.80200.91540.8618
    第3行0.58350.99720.91190.04700.6349
    第4行0.77140.94440.36410.94880.7412
    第5行0.38240.94560.93670.71040.7437
    第6行0.92540.90060.96840.82490.9048
    下载: 导出CSV

    表  5  不同算法的源信号与目标信号的平均互相关性值

    算法$ {{\boldsymbol{S}}_1} $和$ {\bar {\boldsymbol{S}}_1} $平均值$ {{\boldsymbol{S}}_2} $和$ {\bar {\boldsymbol{S}}_2} $平均值总平均值
    NMF[18]0.79880.74890.7738
    S-D[17]0.86740.75820.8128
    SCBDC0.87440.81070.8426
    下载: 导出CSV
  • [1] 付卫红, 周新彪, 农斌. 单通道盲源分离的研究现状与展望[J]. 北京邮电大学学报, 2017, 40(5): 1–11. doi: 10.13190/j.jbupt.2017-001

    FU Weihong, ZHOU Xinbiao, and NONG Bin. The research of SCBSS technology: Survey and prospect[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5): 1–11. doi: 10.13190/j.jbupt.2017-001
    [2] LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791. doi: 10.1038/44565
    [3] KITAMURA D, SARUWATARI H, SHIKANO K, et al. Music signal separation by supervised nonnegative matrix factorization with basis deformation[C]. Proceedings of the 18th International Conference on Digital Signal Processing, Fira, Greece, 2013: 1–6. doi: 10.1109/ICDSP.2013.6622812.
    [4] 赵志强, 颜学龙. 基于EMD和ICA的单通道语音盲源分离算法[J]. 电子科技, 2012, 25(7): 66–68,75. doi: 10.3969/j.issn.1007-7820.2012.07.020

    ZHAO Zhiqiang and YAN Xuelong. Algorithm for EMD and ICA-based single-channel voice blind source separation[J]. Electronic Science and Technology, 2012, 25(7): 66–68,75. doi: 10.3969/j.issn.1007-7820.2012.07.020
    [5] SEGARS W P, TSUI B M W, CAI Jing, et al. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond[J]. IEEE Transactions on Medical Imaging, 2018, 37(3): 680–692. doi: 10.1109/TMI.2017.2738448
    [6] KRISHNA P K M and RAMASWAMY K. Single channel speech separation based on empirical mode decomposition and Hilbert transform[J]. IET Signal Processing, 2017, 11(5): 579–586. doi: 10.1049/iet-spr.2016.0450
    [7] 贾花萍. 盲去卷积算法在图像恢复中的应用研究[J]. 信息技术, 2011(5): 38–39. doi: 10.3969/j.issn.1009-2552.2011.05.013

    JIA Huaping. Blind deconvolution algorithm in application of image restoration[J]. Information Technology, 2011(5): 38–39. doi: 10.3969/j.issn.1009-2552.2011.05.013
    [8] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379–393. doi: 10.1109/TIP.2017.2759252
    [9] SATO Y. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Transactions on Communications, 1975, 23(6): 679–682. doi: 10.1109/TCOM.1975.1092854
    [10] GODARD D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Transactions on Communications, 1980, 28(11): 1867–1875. doi: 10.1109/TCOM.1980.1094608
    [11] YELLIN D and WEINSTEIN E. Criteria for multichannel signal separation[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 2158–2168. doi: 10.1109/78.301850
    [12] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    [13] GRAIS E M, ROMA G, SIMPSON A J R, et al. Two-stage single-channel audio source separation using deep neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(9): 1773–1783. doi: 10.1109/TASLP.2017.2716443
    [14] 郑昌艳, 张雄伟, 曹铁勇, 等. 一种基于LSTM-RNN的喉振传声器语音盲增强算法[J]. 数据采集与处理, 2019, 34(4): 615–624. doi: 10.16337/j.1004-9037.2019.04.005

    ZHENG Changyan, ZHANG Xiongwei, CAO Tieyong, et al. Blind enhancement algorithm for throat microphone speech based on LSTM re-current neural networks[J]. Data Collection &Processing, 2019, 34(4): 615–624. doi: 10.16337/j.1004-9037.2019.04.005
    [15] 王恬, 仇春春, 俞婧, 等. 基于改进SAE网络的自然图像分类[J]. 信息技术, 2016(8): 1–4,8. doi: 10.13274/j.cnki.hdzj.2016.08.001

    WANG Tian, QIU Chunchun, YU Jing, et al. Natural image classification with improved SAE network[J]. Information Technology, 2016(8): 1–4,8. doi: 10.13274/j.cnki.hdzj.2016.08.001
    [16] SUBAKAN Y C and SMARAGDIS P. Generative adversarial source separation[C]. Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 26–30. doi: 10.1109/ICASSP.2018.8461671.
    [17] KONG Qiuqiang, XU Yong, JACKSON P J B, et al. Single-channel signal separation and deconvolution with generative adversarial networks[C]. Proceedings of the 28th International Joint Conference on Artificial, Macao, China, 2019: 2747–2753. doi: 10.24963/ijcai.2019/381.
    [18] CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation[M]. Chichester: John Wiley, 2009: 132–138, 197.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  503
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2021-10-02
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回