高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑评论质量的自注意力胶囊网络评分预测模型

梁顺攀 刘伟 尤殿龙 刘泽谦 张付志

梁顺攀, 刘伟, 尤殿龙, 刘泽谦, 张付志. 考虑评论质量的自注意力胶囊网络评分预测模型[J]. 电子与信息学报, 2021, 43(12): 3451-3458. doi: 10.11999/JEIT200932
引用本文: 梁顺攀, 刘伟, 尤殿龙, 刘泽谦, 张付志. 考虑评论质量的自注意力胶囊网络评分预测模型[J]. 电子与信息学报, 2021, 43(12): 3451-3458. doi: 10.11999/JEIT200932
Shunpan LIANG, Wei LIU, Dianlong YOU, Zeqian LIU, Fuzhi ZHANG. Self-attention Capsule Network Rate Prediction with Review Quality[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3451-3458. doi: 10.11999/JEIT200932
Citation: Shunpan LIANG, Wei LIU, Dianlong YOU, Zeqian LIU, Fuzhi ZHANG. Self-attention Capsule Network Rate Prediction with Review Quality[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3451-3458. doi: 10.11999/JEIT200932

考虑评论质量的自注意力胶囊网络评分预测模型

doi: 10.11999/JEIT200932
基金项目: 国家自然科学基金(62072393), 河北省自然科学基金(G2021203010,F2021203038)
详细信息
    作者简介:

    梁顺攀:男,1976年生,副教授,研究方向为推荐系统

    刘伟:男,1996年生,硕士生,研究方向为推荐系统

    尤殿龙:男,1981年生,副教授,研究方向为特征选择

    刘泽谦:男,1996年生,硕士生,研究方向为推荐系统

    张付志:男,1964年生,教授,研究方向为推荐系统

    通讯作者:

    梁顺攀 liangshunpan@ysu.edu.cn

  • 中图分类号: TP391

Self-attention Capsule Network Rate Prediction with Review Quality

Funds: The National Natural Science Foundation of China (62072393), The Natural Science Foundation of Hebei Province (G2021203010, F2021203038)
  • 摘要: 基于评论文档的推荐系统普遍采用卷积神经网络识别评论的语义,但由于卷积神经网络存在“不变性”,即只关注特征是否存在,忽略特征的细节,卷积中的池化操作也会丢失文本中的一些重要信息;另外,使用用户项目交互的全部评论文档作为辅助信息不仅不会提升语义的质量,反而会受到其中低质量评论的影响,导致推荐结果并不准确。针对上述提到的两个问题,该文提出了自注意力胶囊网络评分预测模型(Self-Attention Capsule network Rate prediction, SACR),模型使用可以保留特征细节的自注意力胶囊网络挖掘评论文档,使用用户和项目的编号信息标记低质量评论,并且将二者的表示相融合用以预测评分。该文还改进了胶囊的挤压函数,从而得到更精确的高层胶囊。实验结果表明,SACR在预测准确性上较一些经典模型及最新模型均有显著的提升。
  • 图  1  SACR模型结构

    图  2  不同数量和维度的胶囊对模型均方误差的影响

    图  3  不同的迭代次数在两个数据集上对模型均方误差的影响

    图  4  不同的挤压程度在两个数据集上对模型均方误差的影响

    表  1  模型符号定义

    符号定义符号定义
    N,M数据集中用户和项目的数量$ {\alpha _i} $,$ {\beta _{\text{j}}} $用户i、项目j的编号嵌入
    R用户或项目的评论文档$ {u_i} $,$ {v_j} $用户i、项目j的胶囊
    $ {r_{ij}} $评分矩阵中用户i对项目j的评分$ C $,$ {e^1} $输入胶囊的通道数、维度
    $ {\hat r_{ij}} $用户i对项目j的预测评分D,e输出胶囊的数量、维度
    W,b模型中的权重矩阵、偏置向量$ \lambda $路由迭代的次数
    d词嵌入维度F评分数量
    下载: 导出CSV

    表  2  对每个数据集的统计

    数据集用户项目评论用户平均评论项目平均评论
    Musical Instruments1429900102617.211.4
    Office Products490524205325810.922.0
    Digital Music554035686470611.718.1
    Tools and Improvement16638102171344768.113.2
    Video Games24303106722317809.521.7
    Toys and Games19412119241675978.614.1
    Kindle Store682236193598261914.415.9
    Movies and TV12396050052167953313.533.6
    下载: 导出CSV

    表  3  各模型实验结果对比

    数据集 PMFConvMFDeepCoNNNARRECARPSACR
    Musical Instruments1.3980.9030.8931.0040.8000.810
    Office Products1.0920.7670.6980.9310.7280.680
    Digital Music1.2060.8760.8091.2700.8890.796
    Tools Improvement1.5661.0560.9581.1960.9640.924
    Video Games1.6721.1741.1341.2051.1661.104
    Toys and Games1.7110.8770.8100.7960.8000.780
    Kindle Store0.9840.6230.6210.6050.6100.590
    Movies and TV1.6691.0101.0260.9940.9970.930
    平均MSE1.4120.9110.8661.0010.8690.826
    下载: 导出CSV

    表  4  子模型预测准确率实验结果对比

    模型 Musical InstrumentsOffice ProductsDigital MusicTools and Home ImprovementVideo Games
    SACR-base0.8530.6810.8050.9241.105
    SACR-cnn0.8860.6910.8080.9361.106
    DeepCoNN0.8930.6980.8090.9581.134
    SACR0.8100.6800.7960.9211.104
    下载: 导出CSV
  • [1] TAN Yunzhi, ZHANG Min, LIU Yiqun, et al. Rating-boosted latent topics: Understanding users and items with ratings and reviews[C]. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, 2016: 2640–2646.
    [2] ZHANG Wei, YUAN Quan, HAN Jiawei, et al. Collaborative multi-level embedding learning from reviews for rating prediction[C]. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, 2016: 2986–2992.
    [3] BLEI D, CARIN L, and DUNSON D. Probabilistic topic models[J]. IEEE Signal Processing Magazine, 2010, 27(6): 55–65. doi: 10.1109/MSP.2010.938079
    [4] KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, USA, 2016: 233–240. doi: 10.1145/2959100.2959165.
    [5] ZHENG Lei, NOROOZI V, and YU P S. Joint deep modeling of users and items using reviews for recommendation[C]. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, 2017: 425–434. doi: 10.1145/3018661.3018665.
    [6] CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]. Proceedings of the 2018 World Wide Web Conference, Lyon, Italy, 2018: 1583–1592. doi: 10.1145/3178876.3186070.
    [7] LU Yichao, DONG Ruihai, and SMYTH B. Coevolutionary recommendation model: Mutual learning between ratings and reviews[C]. Proceedings of the 2018 World Wide Web Conference, Lyon, Italy, 2018: 773–782. doi: 10.1145/3178876.3186158.
    [8] SABOUR S, FROSST N, and HINTON G. Dynamic routing between capsules[C]. NIPS, Los Angeles, USA, 2017: 3859–3869.
    [9] ZHANG Ningyu, DENG Shumin, SUN Zhanling, et al. Attention-based capsule networks with dynamic routing for relation extraction[C]. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 986–992. doi: 10.18653/v1/d18-1120.
    [10] ZHANG Min and GENG Guohua. Capsule networks with word-attention dynamic routing for cultural relics relation extraction[J]. IEEE Access, 2020, 8: 94236–94244. doi: 10.1109/ACCESS.2020.2995447
    [11] ZHAO Wei, YE Jianbo, YANG Min, et al. Investigating capsule networks with dynamic routing for text classification[C]. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 3110–3119. doi: 10.18653/v1/D18-1350.
    [12] KIM J, JANG S, PARK E, et al. Text classification using capsules[J]. Neurocomputing, 2020, 376: 214–221. doi: 10.1016/j.neucom.2019.10.033
    [13] LI Chenliang, QUAN Cong, PENG Li, et al. A capsule network for recommendation and explaining what you like and dislike[C]. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019: 275–284. doi: 10.1145/3331184.3331216.
    [14] LI Chao, LIU Zhiyuan, WU Mengmeng, et al. Multi-interest network with dynamic routing for recommendation at tmall[C]. The 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2615–2623. doi: 10.1145/3357384.3357814.
    [15] OLATUNJI I E, LI Xin, and LAM W. Context-aware helpfulness prediction for online product reviews[C]. 15th Asia Information Retrieval Societies Conference on Information Retrieval Technology, Hong Kong, China, 2019: 56–65. doi: 10.1007/978-3-030-42835-8_6.
    [16] 丁永刚, 李石君, 付星, 等. 面向时序感知的多类别商品方面情感分析推荐模型[J]. 电子与信息学报, 2018, 40(6): 1453–1460. doi: 10.11999/JEIT170938

    DING Yonggang, LI Shijun, FU Xing, et al. Temporal-aware multi-category products recommendation model based on aspect-level sentiment analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1453–1460. doi: 10.11999/JEIT170938
    [17] KINGMA D P and BA L J. ADAM: A method for stochastic optimization[C]. International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–15.
    [18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958. doi: 10.5555/2627435.2670313
    [19] MCAULEY J, TARGETT C, SHI Qinfeng, et al. Image-based recommendations on styles and substitutes[C]. The 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, USA, 2015: 43–52. doi: 10.1145/2766462.2767755.
    [20] SALAKHUTDINOV R and MNIH A. Probabilistic matrix factorization[C]. Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1257–1264. doi: 10.5555/2981562.2981720.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  310
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回