高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著性权重的多曝光融合的单幅雾天图像复原算法

李红云 施云 高银

李红云, 施云, 高银. 基于显著性权重的多曝光融合的单幅雾天图像复原算法[J]. 电子与信息学报, 2022, 44(1): 261-270. doi: 10.11999/JEIT200931
引用本文: 李红云, 施云, 高银. 基于显著性权重的多曝光融合的单幅雾天图像复原算法[J]. 电子与信息学报, 2022, 44(1): 261-270. doi: 10.11999/JEIT200931
LI Hongyun, SHI Yun, GAO Yin. Single Image Dehazing via Saliency Weighted Multi-exposure Fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 261-270. doi: 10.11999/JEIT200931
Citation: LI Hongyun, SHI Yun, GAO Yin. Single Image Dehazing via Saliency Weighted Multi-exposure Fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 261-270. doi: 10.11999/JEIT200931

基于显著性权重的多曝光融合的单幅雾天图像复原算法

doi: 10.11999/JEIT200931
基金项目: 国家自然科学基金(62001452),福建省中青年教师教育科研(JAT191675),泉州市科技计划 (2020C054, 2019C009R)
详细信息
    作者简介:

    李红云:女,1982年生,讲师,研究方向为室内定位地图构建和视频图像复原

    施云:男,1990年生,讲师,研究方向为图像处理与机器人自适应控制

    高银:男,1985年生,高级工程师,研究方向为图像增强、平滑、融合和复原

    通讯作者:

    高银 yngaoyin@163.com

  • 中图分类号: TN911.73; TP391

Single Image Dehazing via Saliency Weighted Multi-exposure Fusion

Funds: The National Natural Science Foundation of China (62001452), The Fujian Province Young band Middle-aged Teacher Education Research Project(JAT191675), The Science and Technology Program of Quanzhou (2020C054, 2019C009R)
  • 摘要: 传统暗原色理论的相关算法,在处理雾天图像时会产生颜色的畸变和亮度的损失,针对该情况,该文提出基于权重多曝光融合的单幅雾天图像复原算法。首先通过雾天图像的直方图分析,获取全局大气背景光值的区域。其次构造一种新的Kirsh算子的高阶差分滤波方法,优化透射率图像。最后设计一种基于显著性权重的多曝光图像融合方法,提高处理后图像的视觉效果。该文采用自然图像和合成图像进行实验,与多种算法通过主观和客观评价,表明该文算法比现有的算法有更高的复原效果。
  • 图  1  算法的流程图

    图  2  区域分割的对比图

    图  3  显著性多曝光融合过程

    图  4  滤波后透射率图像的对比

    图  5  自然图像去雾对比图

    图  6  合成图像去雾对比图

    表  1  自然图像中不同方法的客观评价分析

    工地寺庙稻田原野
    I/E27.16/0.2424.02/0.1234.55/0.0128.74/-0.12
    文献[10]26.16/0.1720.34/0.0731.64/0.0326.85/-0.14
    文献[16]22.71/0.1317.98/0.1129.60/0.0325.44/0.06
    文献[28]23.99/0.1318.99/0.0926.02/0.1126.01/0.02
    文献[29]21.46/0.1418.46/0.1127.00/0.3327.32/0.01
    文献[30]25.96/0.1818.43/0.1126.10/0.0624.87/0.09
    文献[31]26.23/0.1618.29/0.1135.14/0.0532.56/-0.01
    本文21.51/0.24 17.31/0.1628.93/0.2725.13/0.25
    下载: 导出CSV

    表  2  合成图像中不同方法的客观评价分析

    校园小区马路宫殿
    P/R–/––/––/––/–
    文献[10]14.93/0.6215.30/0.5112.18/0.4616.36/0.53
    文献[16]20.79/0.6816.49/0.5313.99/0.5516.58/0.55
    文献[28]15.64/0.6113.66/0.5214.49/0.5318.93/0.55
    文献[29]22.70/0.6719.82/0.5813.67/0.5319.32/0.56
    文献[30]23.44/0.6916.63/0.5319.31/0.5418.84/0.54
    文献[31]19.49/0.5513.31/0.4711.57/0.4114.59/0.47
    our24.04/0.7422.16/0.6423.53/0.6123.02/0.57
    下载: 导出CSV

    表  3  各种算法的处理时间对比(s)

    方法文献[10]文献[16]文献[28]文献[29]文献[30]文献[31]本文
    工地40.725.8256.363.7416.711.6412.61
    寺庙29.325.4240.062.4612.331.5411.53
    稻田13.544.3122.251.5211.701.469.58
    原野18.524.6425.721.8812.041.4312.04
    下载: 导出CSV
  • [1] FREI W. Image enhancement by histogram hyperbolization[J]. Computer Graphics and Image Processing, 1977, 6(3): 286–294. doi: 10.1016/S0146-664X(77)80030-0
    [2] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355–368. doi: 10.1016/S0734-189X(87)80186-X
    [3] JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272
    [4] LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108–128. doi: 10.1038/scientificamerican1277-108
    [5] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356
    [6] NAYAR S K and NARASIMHAN S G. Vision in bad weather[C]. The Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 820–827. doi: 10.1109/ICCV.1999.790306.
    [7] SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Instant dehazing of images using polarization[C]. The 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. doi: 10.1109/CVPR.2001.990493.
    [8] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1–9. doi: 10.1145/1360612.1360671
    [9] FATTAL R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 2014, 34(1): 13. doi: 10.1145/2651362
    [10] HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    [11] 高银, 云利军, 石俊生, 等. 基于各向异性高斯滤波的暗原色理论雾天彩色图像增强算法[J]. 计算机辅助设计与图形学学报, 2015, 27(9): 1701–1706. doi: 10.3969/j.issn.1003-9775.2015.09.014

    GAO Yin, YUN Lijun, SHI Junsheng, et al. Enhancement dark channel algorithm of color fog image based on the anisotropic Gaussian filtering[J]. Journal of Computer-Aided Design &Computer Graphics, 2015, 27(9): 1701–1706. doi: 10.3969/j.issn.1003-9775.2015.09.014
    [12] GAO Yin, SU Yijing, LI Qiming, et al. Single fog image restoration with multi-focus image fusion[J]. Journal of Visual Communication and Image Representation, 2018, 55: 586–595. doi: 10.1016/j.jvcir.2018.07.004
    [13] HUANG S C, YE Jianhui, and CHEN Bohan. An advanced single-image visibility restoration algorithm for real-world hazy scenes[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2962–2972. doi: 10.1109/TIE.2014.2364798
    [14] XIAO Chunxia and GAN Jiajia. Fast image dehazing using guided joint bilateral filter[J]. The Visual Computer, 2012, 28(6/8): 713–721. doi: 10.1007/s00371-012-0679-y
    [15] HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    [16] MENG Gaofeng, WANG Ying, DUAN Jianyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. The 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624. doi: 10.1109/ICCV.2013.82.
    [17] ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191
    [18] TANG Ketan, YANG Jianchao, and WANG Jue. Investigating haze-relevant features in a learning framework for image dehazing[C]. The 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2995–3002. doi: 10.1109/CVPR.2014.383.
    [19] CAI Bolun, XU Xiangmin, JIA Kui, et al. Dehazenet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681
    [20] REN Wenqi, PAN Jinshan, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128(1): 240–259. doi: 10.1007/s11263-019-01235-8
    [21] ZHANG He and PATEL V M. Densely connected pyramid dehazing network[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3194–3203. doi: 10.1109/CVPR.2018.00337.
    [22] ZHANG He, SINDAGI V, and PATEL V M. Multi-scale single image dehazing using perceptual pyramid deep network[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 1015–1024. doi: 10.1109/CVPRW.2018.00135.
    [23] WANG Anna, WANG Wenhui, LIU Jinglu, et al. Aipnet: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2019, 28(1): 381–393. doi: 10.1109/TIP.2018.2868567
    [24] ANCUTI C O and ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 2013, 22(8): 3271–3282. doi: 10.1109/TIP.2013.2262284
    [25] GALDRAN A, VAZQUEZ-CORRAL J, PARDO D, et al. Fusion-based variational image dehazing[J]. IEEE Signal Processing Letters, 2017, 24(2): 151–155. doi: 10.1109/LSP.2016.2643168
    [26] GAO Yin, SU Yijing, LI Qiming, et al. Single image dehazing via self-constructing image fusion[J]. Signal Processing, 2020, 167: 107284. doi: 10.1016/j.sigpro.2019.107284
    [27] XU Zhiyuan, LIU Xiaoming, and CHEN Xiaonan. Fog removal from video sequences using contrast limited adaptive histogram equalization[C]. 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 2009: 1–4. doi: 10.1109/CISE.2009.5366207.
    [28] SULAMI M, GLATZER I, FATTAL R, et al. Automatic recovery of the atmospheric light in hazy images[C]. IEEE International Conference on Computational Photography (ICCP), Santa Clara, USA, 2014: 1–11. doi: 10.1109/ICCPHOT.2014.6831817.
    [29] BERMAN D, TREIBITZ T, and AVIDAN S. Non-local image dehazing[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1674–1682. doi: 10.1109/CVPR.2016.185.
    [30] ZHANG Shengdong, HE Fazhi, and YAO Jian. Single image dehazing using deep convolution neural networks[C]. 18th Pacific-Rim Conference on Multimedia, Harbin, China, 2017: 128–137. doi: 10.1007/978-3-319-77380-3_13.
    [31] BUI T M and KIM W. Single image dehazing using color ellipsoid prior[J]. IEEE Transactions on Image Processing, 2018, 27(2): 999–1009. doi: 10.1109/TIP.2017.2771158
    [32] LI Boyi, REN Wenqi, FU Dengpan, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492–505. doi: 10.1109/TIP.2018.2867951
    [33] ZHANG Lin, ZHANG Lei, and BOVIK A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2579–2591. doi: 10.1109/TIP.2015.2426416
    [34] CHEN Xiaoqiao, ZHANG Qingyi, LIN Manhui, et al. No-reference color image quality assessment: From entropy to perceptual quality[J]. EURASIP Journal on Image and Video Processing, 2019, 2019(1): 77. doi: 10.1186/s13640-019-0479-7
    [35] YANG Guangyi, LI Deshi, LU Fan, et al. RVSIM: A feature similarity method for full-reference image quality assessment[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1): 6. doi: 10.1186/s13640-018-0246-1
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  943
  • HTML全文浏览量:  437
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回