Single Image Dehazing via Saliency Weighted Multi-exposure Fusion
-
摘要: 传统暗原色理论的相关算法,在处理雾天图像时会产生颜色的畸变和亮度的损失,针对该情况,该文提出基于权重多曝光融合的单幅雾天图像复原算法。首先通过雾天图像的直方图分析,获取全局大气背景光值的区域。其次构造一种新的Kirsh算子的高阶差分滤波方法,优化透射率图像。最后设计一种基于显著性权重的多曝光图像融合方法,提高处理后图像的视觉效果。该文采用自然图像和合成图像进行实验,与多种算法通过主观和客观评价,表明该文算法比现有的算法有更高的复原效果。Abstract: Previous techniques are not sufficient enough to deal with dehazing problems by using various hand-crafted priors and appear image hue and brightness distortion. In this paper, a saliency weighted multi-exposure fusion is proposed for single image dehazing. To produce several images with different exposures, a novel segmentation method is exploited to capture the range of global atmospheric light approximately, and a new Kirsh high-order difference filtering method is employed to optimize the transmission map. A saliency weighted multi-exposure fusion method is constructed to improve the dehazing quality. Extensive experimental results on both subjective and objective evaluation demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms.
-
表 1 自然图像中不同方法的客观评价分析
工地 寺庙 稻田 原野 I/E 27.16/0.24 24.02/0.12 34.55/0.01 28.74/-0.12 文献[10] 26.16/0.17 20.34/0.07 31.64/0.03 26.85/-0.14 文献[16] 22.71/0.13 17.98/0.11 29.60/0.03 25.44/0.06 文献[28] 23.99/0.13 18.99/0.09 26.02/0.11 26.01/0.02 文献[29] 21.46/0.14 18.46/0.11 27.00/0.33 27.32/0.01 文献[30] 25.96/0.18 18.43/0.11 26.10/0.06 24.87/0.09 文献[31] 26.23/0.16 18.29/0.11 35.14/0.05 32.56/-0.01 本文 21.51/0.24 17.31/0.16 28.93/0.27 25.13/0.25 表 2 合成图像中不同方法的客观评价分析
校园 小区 马路 宫殿 P/R –/– –/– –/– –/– 文献[10] 14.93/0.62 15.30/0.51 12.18/0.46 16.36/0.53 文献[16] 20.79/0.68 16.49/0.53 13.99/0.55 16.58/0.55 文献[28] 15.64/0.61 13.66/0.52 14.49/0.53 18.93/0.55 文献[29] 22.70/0.67 19.82/0.58 13.67/0.53 19.32/0.56 文献[30] 23.44/0.69 16.63/0.53 19.31/0.54 18.84/0.54 文献[31] 19.49/0.55 13.31/0.47 11.57/0.41 14.59/0.47 our 24.04/0.74 22.16/0.64 23.53/0.61 23.02/0.57 -
[1] FREI W. Image enhancement by histogram hyperbolization[J]. Computer Graphics and Image Processing, 1977, 6(3): 286–294. doi: 10.1016/S0146-664X(77)80030-0 [2] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355–368. doi: 10.1016/S0734-189X(87)80186-X [3] JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272 [4] LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108–128. doi: 10.1038/scientificamerican1277-108 [5] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356 [6] NAYAR S K and NARASIMHAN S G. Vision in bad weather[C]. The Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 820–827. doi: 10.1109/ICCV.1999.790306. [7] SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Instant dehazing of images using polarization[C]. The 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. doi: 10.1109/CVPR.2001.990493. [8] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1–9. doi: 10.1145/1360612.1360671 [9] FATTAL R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 2014, 34(1): 13. doi: 10.1145/2651362 [10] HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168 [11] 高银, 云利军, 石俊生, 等. 基于各向异性高斯滤波的暗原色理论雾天彩色图像增强算法[J]. 计算机辅助设计与图形学学报, 2015, 27(9): 1701–1706. doi: 10.3969/j.issn.1003-9775.2015.09.014GAO Yin, YUN Lijun, SHI Junsheng, et al. Enhancement dark channel algorithm of color fog image based on the anisotropic Gaussian filtering[J]. Journal of Computer-Aided Design &Computer Graphics, 2015, 27(9): 1701–1706. doi: 10.3969/j.issn.1003-9775.2015.09.014 [12] GAO Yin, SU Yijing, LI Qiming, et al. Single fog image restoration with multi-focus image fusion[J]. Journal of Visual Communication and Image Representation, 2018, 55: 586–595. doi: 10.1016/j.jvcir.2018.07.004 [13] HUANG S C, YE Jianhui, and CHEN Bohan. An advanced single-image visibility restoration algorithm for real-world hazy scenes[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2962–2972. doi: 10.1109/TIE.2014.2364798 [14] XIAO Chunxia and GAN Jiajia. Fast image dehazing using guided joint bilateral filter[J]. The Visual Computer, 2012, 28(6/8): 713–721. doi: 10.1007/s00371-012-0679-y [15] HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213 [16] MENG Gaofeng, WANG Ying, DUAN Jianyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. The 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624. doi: 10.1109/ICCV.2013.82. [17] ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191 [18] TANG Ketan, YANG Jianchao, and WANG Jue. Investigating haze-relevant features in a learning framework for image dehazing[C]. The 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2995–3002. doi: 10.1109/CVPR.2014.383. [19] CAI Bolun, XU Xiangmin, JIA Kui, et al. Dehazenet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681 [20] REN Wenqi, PAN Jinshan, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128(1): 240–259. doi: 10.1007/s11263-019-01235-8 [21] ZHANG He and PATEL V M. Densely connected pyramid dehazing network[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3194–3203. doi: 10.1109/CVPR.2018.00337. [22] ZHANG He, SINDAGI V, and PATEL V M. Multi-scale single image dehazing using perceptual pyramid deep network[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 1015–1024. doi: 10.1109/CVPRW.2018.00135. [23] WANG Anna, WANG Wenhui, LIU Jinglu, et al. Aipnet: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2019, 28(1): 381–393. doi: 10.1109/TIP.2018.2868567 [24] ANCUTI C O and ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 2013, 22(8): 3271–3282. doi: 10.1109/TIP.2013.2262284 [25] GALDRAN A, VAZQUEZ-CORRAL J, PARDO D, et al. Fusion-based variational image dehazing[J]. IEEE Signal Processing Letters, 2017, 24(2): 151–155. doi: 10.1109/LSP.2016.2643168 [26] GAO Yin, SU Yijing, LI Qiming, et al. Single image dehazing via self-constructing image fusion[J]. Signal Processing, 2020, 167: 107284. doi: 10.1016/j.sigpro.2019.107284 [27] XU Zhiyuan, LIU Xiaoming, and CHEN Xiaonan. Fog removal from video sequences using contrast limited adaptive histogram equalization[C]. 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 2009: 1–4. doi: 10.1109/CISE.2009.5366207. [28] SULAMI M, GLATZER I, FATTAL R, et al. Automatic recovery of the atmospheric light in hazy images[C]. IEEE International Conference on Computational Photography (ICCP), Santa Clara, USA, 2014: 1–11. doi: 10.1109/ICCPHOT.2014.6831817. [29] BERMAN D, TREIBITZ T, and AVIDAN S. Non-local image dehazing[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1674–1682. doi: 10.1109/CVPR.2016.185. [30] ZHANG Shengdong, HE Fazhi, and YAO Jian. Single image dehazing using deep convolution neural networks[C]. 18th Pacific-Rim Conference on Multimedia, Harbin, China, 2017: 128–137. doi: 10.1007/978-3-319-77380-3_13. [31] BUI T M and KIM W. Single image dehazing using color ellipsoid prior[J]. IEEE Transactions on Image Processing, 2018, 27(2): 999–1009. doi: 10.1109/TIP.2017.2771158 [32] LI Boyi, REN Wenqi, FU Dengpan, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492–505. doi: 10.1109/TIP.2018.2867951 [33] ZHANG Lin, ZHANG Lei, and BOVIK A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2579–2591. doi: 10.1109/TIP.2015.2426416 [34] CHEN Xiaoqiao, ZHANG Qingyi, LIN Manhui, et al. No-reference color image quality assessment: From entropy to perceptual quality[J]. EURASIP Journal on Image and Video Processing, 2019, 2019(1): 77. doi: 10.1186/s13640-019-0479-7 [35] YANG Guangyi, LI Deshi, LU Fan, et al. RVSIM: A feature similarity method for full-reference image quality assessment[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1): 6. doi: 10.1186/s13640-018-0246-1