ElectroCardioGram R-wave Recognition Algorithm Based on Ensemble Empirical Mode Decomposition and Signal Structure Analysis
-
摘要: R波作为确定心电信号各波段的重要参考,是心电自动分析的前提。针对大多数R波识别算法的预处理过程影响识别准确度和耗时问题,该文提出一种基于集合经验模态分解(EEMD)和信号结构分析的算法对带噪心电信号(ECG)的R波直接进行识别。首先通过EEMD将带噪声的心电信号分解成一系列本征模态分量,然后对分解后的各模态分量作独立成分分析以提取出R波特征最明显的成分,对该成分进行结构分析,从而实现对R波的准确定位。仿真结果表明,该文算法对带噪声心电信号的R波识别具有更优性能,对异常心电信号的R波识别也具有明显效果。Abstract: In view of the problem that the preprocessing process of most R-wave recognition algorithms affects the accuracy of recognition and spends more time, an algorithm based on Ensemble Empirical Mode Decomposition (EEMD) and signal structure analysis is proposed to recognize R-wave of ElectroCardioGram (ECG) signals with noise directly. Firstly, the ECG signal with noise is decomposed into a series of intrinsic mode components by EEMD. After that, the intrinsic components are analyzed as independent components to extract the most obvious component of R waves. Finally, the structure of the component is analyzed to realize the accurate positioning of R wave. The simulation results show that the proposed algorithm has better performance in R-wave recognition of noisy ECG signals and demonstrates obvious advantages especially for abnormal ECG signals.
-
表 1 本文算法R波识别性能评估
ECG记录 R峰总数 漏检 误检 错检总数 灵敏度(%) 阳性准确率(%) 准确率(%) sel100 1134 0 3 3 100.00 99.74 99.74 sel103 1048 0 0 0 100.00 100.00 100.00 sel116 1185 0 0 0 100.00 100.00 100.00 sel213 1642 0 1 1 100.00 99.94 99.94 sel221 1247 1 4 5 99.92 99.68 99.60 sel223 1309 3 2 5 99.77 99.85 99.62 sel230 1077 0 0 0 100.00 100.00 100.00 sel301 1351 2 0 2 99.85 100.00 99.85 sel310 2012 3 0 3 99.85 100.00 99.85 sel803 1026 0 0 0 100.00 100.00 100.00 sel853 1113 1 0 1 99.91 100.00 99.91 sel891 1267 0 0 0 100.00 100.00 100.00 合计 15411 10 10 20 99.94 99.94 99.87 -
[1] HE Runnan, WANG Kuanquan, LI Qince, et al. A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 82. doi: 10.1186/s13634-017-0519-3 [2] KULKARNI S S and RAJANKAR S O. Preprocessing techniques of electrocardiogram[J]. International Journal of Engineering and Computer Science, 2016, 5(6): 16746–16748. [3] ZALABARRIA U, IRIGOYEN E, MARTINEZ R, et al. Online robust R-peaks detection in noisy electrocardiograms using a novel iterative smart processing algorithm[J]. Applied Mathematics and Computation, 2020, 369: 124839. doi: 10.1016/j.amc.2019.124839 [4] 赵崇侃. 双时值QRS波检出电路[J]. 中国医疗器械杂志, 1995(3): 158–160.ZHAO Chongkan. A circuit for detecting QRS wave with dual time constant[J]. Chinese Journal of Medical Instrumentation, 1995(3): 158–160. [5] PAN Jiapu and TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, BME-32(3): 230–236. doi: 10.1109/TBME.1985.325532 [6] NAYAK C, SAHA S K, KAR R, et al. An efficient QRS complex detection using optimally designed digital differentiator[J]. Circuits, Systems, and Signal Processing, 2019, 38(2): 716–749. doi: 10.1007/s00034-018-0880-y [7] PARK J S, LEE S W, and PARK U. R peak detection method using wavelet transform and modified Shannon energy envelope[J]. Journal of Healthcare Engineering, 2017, 2017: 4901017. doi: 10.1155/2017/4901017 [8] 吴建, 李康, 庞宇, 等. 基于差分阈值与模板匹配的心电R波提取算法[J]. 重庆邮电大学学报: 自然科学版, 2015, 27(3): 372–376. doi: 10.3979/j.issn.1673-825X.2015.03.014WU Jian, LI Kang, PANG Yu, et al. Algorithm of ECG R-wave extraction based on differential threshold and template matching[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2015, 27(3): 372–376. doi: 10.3979/j.issn.1673-825X.2015.03.014 [9] MERAH M, ABDELMALIK T A, and LARBI B H. R-peaks detection based on stationary wavelet transform[J]. Computer Methods and Programs in Biomedicine, 2015, 121(3): 149–160. doi: 10.1016/j.cmpb.2015.06.003 [10] 孙亚楠, 吕可嘉, 张瑞. 一种新的心电信号R峰自动检测方法[J]. 西北大学学报: 自然科学版, 2018, 48(1): 16–23. doi: 10.16152/j.cnki.xdxbzr.2018-01-004SUN Yanan, LÜ Kejia, and ZHANG Rui. A novel automatic R peak detection method using ECG[J]. Journal of Northwest University:Natural Science Edition, 2018, 48(1): 16–23. doi: 10.16152/j.cnki.xdxbzr.2018-01-004 [11] 季虎, 孙即祥, 王春光. 基于小波变换的自适应QRS-T对消P波检测算法[J]. 电子与信息学报, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117JI Hu, SUN Jixiang, and WANG Chunguang. An adaptive QRS-T cancellation based on wavelet transform for P-wave detection[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117 [12] 熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049 [13] FARASHI S. A multiresolution time-dependent entropy method for QRS complex detection[J]. Biomedical Signal Processing and Control, 2016, 24: 63–71. doi: 10.1016/j.bspc.2015.09.008 [14] 行鸿彦, 黄敏松. 基于Hilbert-Huang变换的QRS波检测算法研究[J]. 仪器仪表学报, 2009, 30(7): 1469–1475. doi: 10.3321/j.issn:0254-3087.2009.07.025XING Hongyan and HUANG Minsong. Research on the QRS complex detection algorithm based on Hilbert-Huang transform[J]. Chinese Journal of Scientific Instrument, 2009, 30(7): 1469–1475. doi: 10.3321/j.issn:0254-3087.2009.07.025 [15] GUTIÉRREZ-RIVAS R, GARCÍA J J, MARNANE W P, et al. Novel real-time low-complexity QRS complex detector based on adaptive thresholding[J]. IEEE Sensors Journal, 2015, 15(10): 6036–6043. doi: 10.1109/JSEN.2015.2450773 [16] KAUR R and KUMAR A. Comparative analysis of various QRS techniques in ECG[J]. International Journal of Computer Science and Mobile Computing, 2016, 5(2): 68–75. doi: 10.1109/IJCSMC.2016.526875 [17] ARBATENI K and BENNIA A. Sigmoidal radial basis function ANN for QRS complex detection[J]. Neurocomputing, 2014, 145: 438–450. doi: 10.1016/j.neucom.2014.05.009 [18] DEV SHARMA L and SUNKARIA R K. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency[J]. Measurement, 2016, 87: 194–204. doi: 10.1016/j.measurement.2016.03.015 [19] SAFARI A, HESAR H D, MOHEBBI M, et al. A novel method for R-peak detection in noisy ECG signals using EEMD and ICA[C]. The 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, Tehran, Iran, 2017: 155–158. doi: 10.1109/ICBME.2016.7890948. [20] WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047 [21] 陈略, 唐歌实, 訾艳阳, 等. 自适应EEMD方法在心电信号处理中的应用[J]. 数据采集与处理, 2011, 26(3): 361–366. doi: 10.3969/j.issn.1004-9037.2011.03.020CHEN Lue, TANG Geshi, ZI Yanyang, et al. Application of adaptive ensemble empirical mode decomposition method to electrocardiogram signal processing[J]. Journal of Data Acquisition &Processing, 2011, 26(3): 361–366. doi: 10.3969/j.issn.1004-9037.2011.03.020 [22] LI Yuan, ZHOU Zhuhuang, YUAN Yanchao, et al. An improved FastICA method for fetal ECG extraction[J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 7061456. doi: 10.1155/2018/7061456 [23] BURGUERA A. Fast QRS detection and ECG compression based on signal structural analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 123–131. doi: 10.1109/JBHI.2018.2792404 [24] LAGUNA P, MARK R G, GOLDBERG A, et al. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG[C]. The Computers in Cardiology 1997, Lund, Sweden, 1997: 673–676. doi: 10.1109/CIC.1997.648140. [25] QIN Q, LI JIANQING, YUE YINGGAO, et al. An adaptive and time-efficient ECG R-peak detection algorithm[J]. Journal of Healthcare Engineering, 2017, 2017: 5980541. doi: 10.1155/2017/5980541 [26] KIM J and SHIN H. Simple and robust realtime QRS detection algorithm based on spatiotemporal characteristic of the QRS complex[J]. PLoS One, 2016, 11(3): e0150144. doi: 10.1371/journal.pone.0150144 [27] REHMAN N and MANDIC D P. Multivariate empirical mode decomposition[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2117): 1291–1302. doi: 10.1098/rspa.2009.0502 [28] UR REHMAN N and MANDIC D P. Filter bank property of multivariate empirical mode decomposition[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2421–2426. doi: 10.1109/TSP.2011.2106779