高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集合经验模态分解和信号结构分析的心电信号R波识别算法

林金朝 李必禄 李国权 黄正文 庞宇

林金朝, 李必禄, 李国权, 黄正文, 庞宇. 基于集合经验模态分解和信号结构分析的心电信号R波识别算法[J]. 电子与信息学报, 2021, 43(8): 2352-2360. doi: 10.11999/JEIT200915
引用本文: 林金朝, 李必禄, 李国权, 黄正文, 庞宇. 基于集合经验模态分解和信号结构分析的心电信号R波识别算法[J]. 电子与信息学报, 2021, 43(8): 2352-2360. doi: 10.11999/JEIT200915
Jinzhao LIN, Bilu LI, Guoquan LI, Zhengwen HUANG, Yu PANG. ElectroCardioGram R-wave Recognition Algorithm Based on Ensemble Empirical Mode Decomposition and Signal Structure Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2352-2360. doi: 10.11999/JEIT200915
Citation: Jinzhao LIN, Bilu LI, Guoquan LI, Zhengwen HUANG, Yu PANG. ElectroCardioGram R-wave Recognition Algorithm Based on Ensemble Empirical Mode Decomposition and Signal Structure Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2352-2360. doi: 10.11999/JEIT200915

基于集合经验模态分解和信号结构分析的心电信号R波识别算法

doi: 10.11999/JEIT200915
基金项目: 国家重点研发计划(2019YFC1511300),国家自然科学基金(61971079),重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0666),四川省区域创新合作项目(2020YFQ0025),重庆市创新群体(cstc2020jcyj-cxttX0002),重庆市教委科学技术研究项目(KJZD-K20200604)
详细信息
    作者简介:

    林金朝:男,1966年生,教授,研究方向为无线通信传输技术、医疗信号处理等

    李必禄:男,1997年生,硕士,研究方向为医疗信号处理、人工智能

    李国权:男,1980年生,教授,研究方向为MIMO无线通信传输技术、医疗信号处理等

    黄正文:男,1981年生,讲师/高级研究员,研究方向为人工智能、复杂系统优化、数据分析等

    庞宇:男,1978年生,讲师,博士生导师,研究方向为无线通信、集成电路设计、数字医疗研究以及人工智能

    通讯作者:

    李国权 ligq@cqupt.edu.cn

  • 中图分类号: TN911.72; R540.41

ElectroCardioGram R-wave Recognition Algorithm Based on Ensemble Empirical Mode Decomposition and Signal Structure Analysis

Funds: The National Key Research and Development Program (2019yfc1511300), The National Natural Science Foundation of China (61971079),The General Program of Chongqing Natural Science Foundation (cstc2019jcyj-msxmx0666), The Sichuan Innovation Cooperation Program (2020YFQ0025), The Chongqing Creative Group Program (cstc2020jcyj-cxttX0002), The Science and Technology Research Program of Chongqing Education Committee (KJZD-K20200604)
  • 摘要: R波作为确定心电信号各波段的重要参考,是心电自动分析的前提。针对大多数R波识别算法的预处理过程影响识别准确度和耗时问题,该文提出一种基于集合经验模态分解(EEMD)和信号结构分析的算法对带噪心电信号(ECG)的R波直接进行识别。首先通过EEMD将带噪声的心电信号分解成一系列本征模态分量,然后对分解后的各模态分量作独立成分分析以提取出R波特征最明显的成分,对该成分进行结构分析,从而实现对R波的准确定位。仿真结果表明,该文算法对带噪声心电信号的R波识别具有更优性能,对异常心电信号的R波识别也具有明显效果。
  • 图  1  本文算法流程图

    图  2  原始sel223信号和添加5 dB高斯白噪声的sel223信号

    图  3  Pan-Tomkins算法对$y(n)$的R波检测结果

    图  4  EEMD-ICA算法对$y(n)$的R波检测结果

    图  5  本文算法对$y(n)$的R波检测结果

    图  6  长停顿心电信号片段R波识别效果

    图  7  T波高大心电信号片段R波识别效果

    表  1  本文算法R波识别性能评估

    ECG记录R峰总数漏检误检错检总数灵敏度(%)阳性准确率(%)准确率(%)
    sel1001134033100.0099.7499.74
    sel1031048000100.00100.00100.00
    sel1161185000100.00100.00100.00
    sel2131642011100.0099.9499.94
    sel221124714599.9299.6899.60
    sel223130932599.7799.8599.62
    sel2301077000100.00100.00100.00
    sel301135120299.85100.0099.85
    sel310201230399.85100.0099.85
    sel8031026000100.00100.00100.00
    sel853111310199.91100.0099.91
    sel8911267000100.00100.00100.00
    合计1541110102099.9499.9499.87
    下载: 导出CSV

    表  2  3种R波识别算法性能对比

    R波识别算法R波总数漏检误检错检总数灵敏度(%)阳性准确率(%)准确率(%)平均处理时间(s)
    Pan-Tomkins算法[4]15411952512099.3899.8499.221.7194
    EEMD-ICA算法[17]154111444018499.0799.7498.8176.9896
    本文算法1541110102099.9499.9499.8776.9335
    带预处理算法[26]154111314015399.9199.0999.02114.607
    下载: 导出CSV
  • [1] HE Runnan, WANG Kuanquan, LI Qince, et al. A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 82. doi: 10.1186/s13634-017-0519-3
    [2] KULKARNI S S and RAJANKAR S O. Preprocessing techniques of electrocardiogram[J]. International Journal of Engineering and Computer Science, 2016, 5(6): 16746–16748.
    [3] ZALABARRIA U, IRIGOYEN E, MARTINEZ R, et al. Online robust R-peaks detection in noisy electrocardiograms using a novel iterative smart processing algorithm[J]. Applied Mathematics and Computation, 2020, 369: 124839. doi: 10.1016/j.amc.2019.124839
    [4] 赵崇侃. 双时值QRS波检出电路[J]. 中国医疗器械杂志, 1995(3): 158–160.

    ZHAO Chongkan. A circuit for detecting QRS wave with dual time constant[J]. Chinese Journal of Medical Instrumentation, 1995(3): 158–160.
    [5] PAN Jiapu and TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, BME-32(3): 230–236. doi: 10.1109/TBME.1985.325532
    [6] NAYAK C, SAHA S K, KAR R, et al. An efficient QRS complex detection using optimally designed digital differentiator[J]. Circuits, Systems, and Signal Processing, 2019, 38(2): 716–749. doi: 10.1007/s00034-018-0880-y
    [7] PARK J S, LEE S W, and PARK U. R peak detection method using wavelet transform and modified Shannon energy envelope[J]. Journal of Healthcare Engineering, 2017, 2017: 4901017. doi: 10.1155/2017/4901017
    [8] 吴建, 李康, 庞宇, 等. 基于差分阈值与模板匹配的心电R波提取算法[J]. 重庆邮电大学学报: 自然科学版, 2015, 27(3): 372–376. doi: 10.3979/j.issn.1673-825X.2015.03.014

    WU Jian, LI Kang, PANG Yu, et al. Algorithm of ECG R-wave extraction based on differential threshold and template matching[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2015, 27(3): 372–376. doi: 10.3979/j.issn.1673-825X.2015.03.014
    [9] MERAH M, ABDELMALIK T A, and LARBI B H. R-peaks detection based on stationary wavelet transform[J]. Computer Methods and Programs in Biomedicine, 2015, 121(3): 149–160. doi: 10.1016/j.cmpb.2015.06.003
    [10] 孙亚楠, 吕可嘉, 张瑞. 一种新的心电信号R峰自动检测方法[J]. 西北大学学报: 自然科学版, 2018, 48(1): 16–23. doi: 10.16152/j.cnki.xdxbzr.2018-01-004

    SUN Yanan, LÜ Kejia, and ZHANG Rui. A novel automatic R peak detection method using ECG[J]. Journal of Northwest University:Natural Science Edition, 2018, 48(1): 16–23. doi: 10.16152/j.cnki.xdxbzr.2018-01-004
    [11] 季虎, 孙即祥, 王春光. 基于小波变换的自适应QRS-T对消P波检测算法[J]. 电子与信息学报, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117

    JI Hu, SUN Jixiang, and WANG Chunguang. An adaptive QRS-T cancellation based on wavelet transform for P-wave detection[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117
    [12] 熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049

    XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049
    [13] FARASHI S. A multiresolution time-dependent entropy method for QRS complex detection[J]. Biomedical Signal Processing and Control, 2016, 24: 63–71. doi: 10.1016/j.bspc.2015.09.008
    [14] 行鸿彦, 黄敏松. 基于Hilbert-Huang变换的QRS波检测算法研究[J]. 仪器仪表学报, 2009, 30(7): 1469–1475. doi: 10.3321/j.issn:0254-3087.2009.07.025

    XING Hongyan and HUANG Minsong. Research on the QRS complex detection algorithm based on Hilbert-Huang transform[J]. Chinese Journal of Scientific Instrument, 2009, 30(7): 1469–1475. doi: 10.3321/j.issn:0254-3087.2009.07.025
    [15] GUTIÉRREZ-RIVAS R, GARCÍA J J, MARNANE W P, et al. Novel real-time low-complexity QRS complex detector based on adaptive thresholding[J]. IEEE Sensors Journal, 2015, 15(10): 6036–6043. doi: 10.1109/JSEN.2015.2450773
    [16] KAUR R and KUMAR A. Comparative analysis of various QRS techniques in ECG[J]. International Journal of Computer Science and Mobile Computing, 2016, 5(2): 68–75. doi: 10.1109/IJCSMC.2016.526875
    [17] ARBATENI K and BENNIA A. Sigmoidal radial basis function ANN for QRS complex detection[J]. Neurocomputing, 2014, 145: 438–450. doi: 10.1016/j.neucom.2014.05.009
    [18] DEV SHARMA L and SUNKARIA R K. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency[J]. Measurement, 2016, 87: 194–204. doi: 10.1016/j.measurement.2016.03.015
    [19] SAFARI A, HESAR H D, MOHEBBI M, et al. A novel method for R-peak detection in noisy ECG signals using EEMD and ICA[C]. The 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, Tehran, Iran, 2017: 155–158. doi: 10.1109/ICBME.2016.7890948.
    [20] WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
    [21] 陈略, 唐歌实, 訾艳阳, 等. 自适应EEMD方法在心电信号处理中的应用[J]. 数据采集与处理, 2011, 26(3): 361–366. doi: 10.3969/j.issn.1004-9037.2011.03.020

    CHEN Lue, TANG Geshi, ZI Yanyang, et al. Application of adaptive ensemble empirical mode decomposition method to electrocardiogram signal processing[J]. Journal of Data Acquisition &Processing, 2011, 26(3): 361–366. doi: 10.3969/j.issn.1004-9037.2011.03.020
    [22] LI Yuan, ZHOU Zhuhuang, YUAN Yanchao, et al. An improved FastICA method for fetal ECG extraction[J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 7061456. doi: 10.1155/2018/7061456
    [23] BURGUERA A. Fast QRS detection and ECG compression based on signal structural analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 123–131. doi: 10.1109/JBHI.2018.2792404
    [24] LAGUNA P, MARK R G, GOLDBERG A, et al. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG[C]. The Computers in Cardiology 1997, Lund, Sweden, 1997: 673–676. doi: 10.1109/CIC.1997.648140.
    [25] QIN Q, LI JIANQING, YUE YINGGAO, et al. An adaptive and time-efficient ECG R-peak detection algorithm[J]. Journal of Healthcare Engineering, 2017, 2017: 5980541. doi: 10.1155/2017/5980541
    [26] KIM J and SHIN H. Simple and robust realtime QRS detection algorithm based on spatiotemporal characteristic of the QRS complex[J]. PLoS One, 2016, 11(3): e0150144. doi: 10.1371/journal.pone.0150144
    [27] REHMAN N and MANDIC D P. Multivariate empirical mode decomposition[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2117): 1291–1302. doi: 10.1098/rspa.2009.0502
    [28] UR REHMAN N and MANDIC D P. Filter bank property of multivariate empirical mode decomposition[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2421–2426. doi: 10.1109/TSP.2011.2106779
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  483
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回