高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于心电与光电容积脉搏波特征层融合的身份识别方法

肖剑 李思卓 董威 李清华 胡芳

肖剑, 李思卓, 董威, 李清华, 胡芳. 基于心电与光电容积脉搏波特征层融合的身份识别方法[J]. 电子与信息学报, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904
引用本文: 肖剑, 李思卓, 董威, 李清华, 胡芳. 基于心电与光电容积脉搏波特征层融合的身份识别方法[J]. 电子与信息学报, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904
Jian XIAO, Sizhuo LI, Wei DONG, Qinghua LI, Fang HU. An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904
Citation: Jian XIAO, Sizhuo LI, Wei DONG, Qinghua LI, Fang HU. An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904

基于心电与光电容积脉搏波特征层融合的身份识别方法

doi: 10.11999/JEIT200904
基金项目: 陕西省重点研发计划项目(2021GY-054),西安市科技创新引导项目(20180504YD23CG29(1))
详细信息
    作者简介:

    肖剑:男,1975年生,副教授,研究方向为模式识别与智能系统

    李思卓:女,1997年生,硕士生,研究方向为新型生物特征识别技术

    董威:男,1994年生,硕士,研究方向为新型生物特征识别技术

    李清华:女,1975年生,博士,研究方向为模式识别与智能系统

    胡芳:女,1995年生,硕士生,研究方向为智能可穿戴设备及系统

    通讯作者:

    肖剑 xiaojian@chd.edu.cn

  • 中图分类号: TP911.7

An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion

Funds: The Key Project of Research and Development Program of Shaanxi Province of China (2021GY-54),Xi’an Science and Technology Innovation Guiding Project (20180504YD23CG29(1))
  • 摘要: 针对单模态的心电信号(ECG)或光电容积脉搏波信号(PPG)识别技术中存在的精度不高,未考虑类内相关性等问题,该文提出基于判别相关分析法(DCA)对ECG与PPG组合特征矩阵进行特征层融合以及对K-最近邻(KNN)和支持向量机(SVM)分类器在决策层融合的识别方法。实验结果表明,使用融合特征(ECG-PPG)与融合分类器(KNN-SVM)的方法对23名受试者进行分类识别的准确率可以达到98.2%,识别精度在常规环境下优于单模态识别。为多模生物特征身份识别提供了一种有效模型。
  • 图  1  心电与光电容积脉搏波融合的身份识别模型

    图  2  心电信号

    图  3  光电容积脉搏波信号

    图  4  ECG特征检测

    图  5  PPG特征检测

    图  6  特征层融合识别流程图

    图  7  身份识别系统总体框图

    图  8  数据采集过程

    图  9  ROC曲线

    图  10  不同信号在不同训练时长下的识别率

    表  1  小波变换提取到的信号特征

    编号特征具体描述
    1PQ_TPQ波持续时间(ms)
    2ST_TST波持续时间(ms)
    3QR_TQR波持续时间(ms)
    4RS_TRS波持续时间(ms)
    5R_AR波幅值(μV)
    6PT_APT波振幅差
    7SQ_ASQ波振幅差
    8PR_APR波振幅差
    下载: 导出CSV

    表  2  PPG信号的特征与描述

    编号特征具体描述
    1P_A收缩波峰幅值(μV)
    2V_A舒张波幅值(μV)
    3L_A降中峡幅值(μV)
    4T_A波谷幅值(μV)
    5PT_A波谷到收缩波幅值差(μV)
    6VT_A波谷到舒张波距离幅值差(μV)
    7PV_A收缩波峰到舒张波幅值差(μV)
    8TT_T波谷到波谷持续时间(ms)
    9TP_T波谷到收缩波峰持续时间(ms)
    10PV_T收缩波峰到舒张波时间(ms)
    11TV_T波谷到舒张波时间(ms)
    下载: 导出CSV

    表  3  不同模式下识别准确率

    ECGPPGECG-PPG
    SVM0.8800.8100.961
    KNN0.8450.7450.915
    KNN-SVM0.9100.8240.982
    下载: 导出CSV
  • [1] KAUR G, SINGH G, and KUMAR V. A review on biometric recognition[J]. International Journal of Bio-Science and Bio-Technology, 2014, 6(4): 69–76. doi: 10.14257/ijbsbt.2014.6.4.07
    [2] ROSS A A, NANDAKUMAR K J, and JAIN A K. Handbook of Multibiometrics[M]. New York: Springer, 2006: 37–58.
    [3] ROSS A and JAIN A. Information fusion in biometrics[J]. Pattern Recognition Letters, 2003, 24(13): 2115–2125. doi: 10.1016/S0167-8655(03)00079-5
    [4] 张敏贵, 潘泉, 张洪才, 等. 多生物特征识别[J]. 信息与控制, 2002, 31(6): 524–528. doi: 10.3969/j.issn.1002-0411.2002.06.010

    ZHANG Mingui, PAN Quan, ZHANG Hongcai, et al. Multibiometrics identification techniques[J]. Information and Control, 2002, 31(6): 524–528. doi: 10.3969/j.issn.1002-0411.2002.06.010
    [5] CHAA M, BOUKEZZOULA N E, and MERAOUMIA A. Features-level fusion of reflectance and illumination images in finger-knuckle-print identification system[J]. International Journal on Artificial Intelligence Tools, 2018, 27(3): 1850007. doi: 10.1142/S0218213018500070
    [6] CHEN Junkai, CHEN Zenghai, CHI Zheru, et al. Facial expression recognition in video with multiple feature fusion[J]. IEEE Transactions on Affective Computing, 2018, 9(1): 38–50. doi: 10.1109/TAFFC.2016.2593719
    [7] GUPTA P. Multibiometric authentication system using slap fingerprints, palm dorsal vein, and hand geometry[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9777–9784. doi: 10.1109/TIE.2018.2823686
    [8] HAMMAD M and WANG Kuanquan. Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network[J]. Computers & Security, 2019, 81: 107–122. doi: 10.1016/j.cose.2018.11.003
    [9] ARTEAGA-FALCONI J S, AL OSMAN H, and EL SADDIK A. ECG and fingerprint bimodal authentication[J]. Sustainable Cities and Society, 2018, 40: 274–283. doi: 10.1016/j.scs.2017.12.023
    [10] BASHAR K. ECG and EEG based multimodal biometrics for human identification[C]. 2018 IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 4345–4350.
    [11] 杨宜蒙. 基于ECG和PPG信号身份识别算法的研究[D]. [硕士论文], 哈尔滨工业大学, 2016.

    YANG Yimeng. A study of ECG & PPG-based biometrics technology[D]. [Master dissertation], Harbin Institute of Technology, 2016.
    [12] SUN Quansen, ZENG Shenggen, LIU Yan, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437–2448. doi: 10.1016/j.patcog.2004.12.013
    [13] CORREA N M, ADALI T, LI Yiou, et al. Canonical correlation analysis for data fusion and group inferences[J]. IEEE Signal Processing Magazine, 2010, 27(4): 39–50. doi: 10.1109/MSP.2010.936725
    [14] HAGHIGHAT M, ABDEL-MOTTALEB M, and ALHALABI W. Fully automatic face normalization and single sample face recognition in unconstrained environments[J]. Expert Systems with Applications, 2016, 47: 23–34. doi: 10.1016/j.eswa.2015.10.047
    [15] GAO Xizhan, SUN Quansen, and YANG Jing. MRCCA: A novel CCA based method and its application in feature extraction and fusion for matrix data[J]. Applied Soft Computing, 2018, 62: 45–56. doi: 10.1016/j.asoc.2017.10.008
    [16] 胡敏, 滕文娣, 王晓华, 等. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338–1344. doi: 10.11999/JEIT170799

    HU Min, TENG Wendi, WANG Xiaohua, et al. Facial expression recognition based on local texture and shape features[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1338–1344. doi: 10.11999/JEIT170799
    [17] GUO Manshan, YANG Xu, ZHANG Feng, et al. Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects[J]. Journal of Nuclear Materials, 2019, 523: 43–50. doi: 10.1016/j.jnucmat.2019.05.040
    [18] SCHOTT J R. Principles of multivariate analysis: A user’s perspective[J]. Journal of the American Statistical Association, 2002, 97(458): 657–658. doi: 10.1198/jasa.2002.s479
    [19] HAGHIGHAT M, ABDEL-MOTTALEB M, and ALHALABI W. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 1984–1996. doi: 10.1109/TIFS.2016.2569061
    [20] TURK M and PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86. doi: 10.1162/jocn.1991.3.1.71
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  725
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 修回日期:  2021-03-16
  • 网络出版日期:  2021-04-12
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回