高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于串联式一维神经网络的毫米波雷达动态手势识别方法

靳标 彭宇 邝晓飞 张贞凯

靳标, 彭宇, 邝晓飞, 张贞凯. 基于串联式一维神经网络的毫米波雷达动态手势识别方法[J]. 电子与信息学报, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894
引用本文: 靳标, 彭宇, 邝晓飞, 张贞凯. 基于串联式一维神经网络的毫米波雷达动态手势识别方法[J]. 电子与信息学报, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894
Biao JIN, Yu PENG, Xiaofei KUANG, Zhenkai ZHANG. Dynamic Gesture Recognition Method Based on Millimeter-wave Radar by One-Dimensional Series Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894
Citation: Biao JIN, Yu PENG, Xiaofei KUANG, Zhenkai ZHANG. Dynamic Gesture Recognition Method Based on Millimeter-wave Radar by One-Dimensional Series Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894

基于串联式一维神经网络的毫米波雷达动态手势识别方法

doi: 10.11999/JEIT200894
基金项目: 国家自然科学基金(61701416, 61871203)
详细信息
    作者简介:

    靳标:男,1986年生,博士,副教授,研究方向为雷达目标跟踪与识别、MIMO雷达发射波形设计等

    彭宇:男,1996年生,硕士生,研究方向为雷达目标识别、深度学习

    邝晓飞:男,1996年生,硕士生,研究方向为MIMO雷达资源分配

    张贞凯:男,1982年生,博士,副教授,研究方向为雷达通信一体化、认知雷达

    通讯作者:

    靳标 biaojin@just.edu.cn

  • 中图分类号: TN911.73; TP391.4

Dynamic Gesture Recognition Method Based on Millimeter-wave Radar by One-Dimensional Series Neural Network

Funds: The National Natural Science Foundation of China (61701416, 61871203)
  • 摘要: 现有的基于雷达传感器的手势识别方法,大多先利用雷达回波对手势的距离、多普勒和角度等信息进行参数估计,得到各种数据谱图,然后再利用卷积神经网络对这些谱图进行分类,实现过程较为复杂。该文提出一种基于串联式1维神经网络(1D-ScNN)的毫米波雷达动态手势识别方法。首先基于毫米波雷达获取动态手势的原始回波,然后利用1维卷积和池化操作对手势特征进行提取,并将这些特征信息输入1维Inception v3结构。最后在网络的末端接入长短期记忆(LSTM)网络来聚合1维特征,充分利用动态手势的帧间相关性,提高识别准确率和训练收敛速度。实验结果表明,该方法实现过程简单,收敛速度快,识别准确率可以达到96.0%以上,高于现有基于数据谱图的手势分类方法。
  • 图  1  雷达原始回波解析流程图

    图  2  1D-ScNN结构图

    图  3  1D-Inception结构

    图  4  LSTM算子运算过程

    图  5  动态手势定义

    图  6  滤波器尺寸对测试精度的影响

    图  7  不同学习率的训练精度和训练损失

    图  8  1D-ScNN识别准确率

    图  9  1D-ScNN与1D-ID-CNN模型的混淆矩阵

    表  1  雷达传感器参数

    参数数量
    发射天线数量(个)3
    接收天线数量(个)4
    采集帧数 (帧)32
    帧时间(ms)40
    Chirp数(个)32
    带宽(MHz)1798.92
    采样点数64
    采样率(MHz)10
    下载: 导出CSV

    表  2  1维卷积参数配置

    类型卷积核+步长参数量输出尺寸时间复杂度(FLOPs)
    Input0(8, 262144, 2)
    Conv1D-164*48+86208(8, 32768, 64)2.01×108
    Conv1D-2128*9+873856(8, 4095, 128)3.02×108
    MaxPool1D1*4+40(8, 1024, 128)
    1D-Inception(a)64*4+17248(8, 1024, 192)1.43×104
    MaxPool1D1*4+40(8, 256, 192)
    1D-Inception(b)64*6+110448(8, 256, 256)2.05×104
    MaxPool1D1*4+40(8, 64, 256)
    1D-Inception(c)64*7+113584(8, 64, 320)2.36×104
    MaxPool1D1*4+20(8, 32, 320)
    下载: 导出CSV

    表  3  不同模型比较结果

    输入类型模型数据量参数量单样本采集帧数时间复杂度(FLOPs)平均准确率(%)
    数据谱图TS-FNN[4]4000323.20×101092.06
    RDA-T[7]3600322.11×10995.30
    LRACN[17]75011162771008.74×10894.34
    原始回波1D-ID-CNN2000275381325.03×10893.75
    360094.00
    400093.02
    1D-ScNN(本文方法)2000156693325.03×10896.00
    360095.75
    400096.01
    下载: 导出CSV
  • [1] LIEN J, GILLIAN N, KARAGOZLER M E, et al. Soli: Ubiquitous gesture sensing with millimeter wave radar[J]. ACM Transactions on Graphics, 2016, 35(4): 142: 1–142: 19. doi: 10.1145/2897824.2925953
    [2] KIM Y and LING H. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337. doi: 10.1109/TGRS.2009.2012849
    [3] 王俊, 郑彤, 雷鹏, 等. 基于卷积神经网络的手势动作雷达识别方法[J]. 北京航空航天大学学报, 2018, 44(6): 1117–1123. doi: 10.13700/j.bh.1001-5965.2017.0397

    WANG Jun, ZHENG Tong, LEI Peng, et al. Hand gesture recognition method by radar based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1117–1123. doi: 10.13700/j.bh.1001-5965.2017.0397
    [4] 王勇, 王沙沙, 田增山, 等. 基于FMCW雷达的双流融合神经网络手势识别方法[J]. 电子学报, 2019, 47(7): 1408–1415. doi: 10.3969/j.issn.0372-2112.2019.07.003

    WANG Yong, WANG Shasha, TIAN Zengshan, et al. Two-stream fusion neural network approach for hand gesture recognition based on FMCW radar[J]. Acta Electronica Sinica, 2019, 47(7): 1408–1415. doi: 10.3969/j.issn.0372-2112.2019.07.003
    [5] 夏朝阳, 周成龙, 介钧誉, 等. 基于多通道调频连续波毫米波雷达的微动手势识别[J]. 电子与信息学报, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797

    XIA Zhaoyang, ZHOU Chenglong, JIE Junyu, et al. Micro-motion gesture recognition based on multi-channel frequency modulated continuous wave millimeter wave radar[J]. Journal of Electronics &Information Technology, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797
    [6] ZHANG Zhenyuan, TIAN Zengshan, and ZHOU Mu. Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor[J]. IEEE Sensors Journal, 2018, 18(8): 3278–3289. doi: 10.1109/JSEN.2018.2808688
    [7] 王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485

    WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
    [8] LI Gang, ZHANG Rui, RITCHIE M, et al. Sparsity-driven micro-doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 655–665. doi: 10.1109/TAES.2017.2761229
    [9] RYU S J, SUH J S, BAEK S H, et al. Feature-based hand gesture recognition using an FMCW radar and its temporal feature analysis[J]. IEEE Sensors Journal, 2018, 18(18): 7593–7602. doi: 10.1109/JSEN.2018.2859815
    [10] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
    [11] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [12] DUMOULIN V and VISIN F. A guide to convolution arithmetic for deep learning[J]. arXiv: 1603.07285, 2018.
    [13] CHEN Haiquan and YE Wenbin. Classification of human activity based on radar signal using 1-D convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1178–1182. doi: 10.1109/LGRS.2019.2942097
    [14] KONSTANTINIDIS E and COTRONIS Y. A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling[J]. Journal of Parallel and Distributed Computing, 2017, 107: 37–56. doi: 10.1016/j.jpdc.2017.04.002
    [15] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
    [16] LIN J, GAN Chuang, and HAN Song. TSM: Temporal shift module for efficient video understanding[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7082–7092. doi: 10.1109/ICCV.2019.00718.
    [17] HAZRA S and SANTRA A. Robust gesture recognition using millimetric-wave radar system[J]. IEEE Sensors Letters, 2018, 2(4): 7001804. doi: 10.1109/LSENS.2018.2882642
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1812
  • HTML全文浏览量:  703
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2021-01-30
  • 网络出版日期:  2021-02-24
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回