高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度神经网络的正交频分复用波形外辐射源雷达参考信号重构

赵志欣 戴文婷 陈鑫 何仕华 陶平安

赵志欣, 戴文婷, 陈鑫, 何仕华, 陶平安. 基于深度神经网络的正交频分复用波形外辐射源雷达参考信号重构[J]. 电子与信息学报, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888
引用本文: 赵志欣, 戴文婷, 陈鑫, 何仕华, 陶平安. 基于深度神经网络的正交频分复用波形外辐射源雷达参考信号重构[J]. 电子与信息学报, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888
Zhixin ZHAO, Wenting DAI, Xin CHEN, Shihua HE, Ping’an TAO. Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888
Citation: Zhixin ZHAO, Wenting DAI, Xin CHEN, Shihua HE, Ping’an TAO. Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888

基于深度神经网络的正交频分复用波形外辐射源雷达参考信号重构

doi: 10.11999/JEIT200888
基金项目: 国家自然科学基金(61461030),江西省自然科学基金(20202BAB202001)
详细信息
    作者简介:

    赵志欣:女,1986年生,副教授,研究方向为外辐射源雷达,雷达信号处理

    戴文婷:女,1996年生,硕士生,研究方向为外辐射源雷达信号处理

    陈鑫:男,1993年生,硕士生,研究方向为外辐射源雷达信号处理

    何仕华:男,1996年生,硕士生,研究方向为外辐射源雷达杂波抑制

    陶平安:男,1997年生,硕士生,研究方向为外辐射源雷达杂波抑制

    通讯作者:

    赵志欣 zhaozhixin@ncu.edu.cn

  • 中图分类号: TN958.97

Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform

Funds: The National Natural Science Foundation of China (61461030), The Natural Science Fund of Jiangxi Province (20202BAB202001)
  • 摘要: 针对正交频分复用(OFDM)波形外辐射源雷达的参考信号获取问题,基于“解调-再调制”的重构方法结合了波形优势,能获得更为纯净的参考信号。该文在此基础上提出一种联合OFDM解调、信道估计、信道均衡和星座点逆映射的深度神经网络(DNN)重构方法,建立了基于DNN的参考信号重构方案,通过网络学习自适应深度挖掘从时域接收符号到传输码元之间的映射关系、隐式地估计信道响应,从而提高解调精度和重构性能。该文首先研究了仿真数据集的获取问题、DNN的搭建和训练问题,接着对基于DNN方法在导频数目减少、循环前缀的移除、存在符号定时偏差、存在载波频偏、对高峰值平均功率比信号进行时域加窗滤波等情况下的参考信号重构性能进行了仿真分析,仿真结果表明该方法对参考信号重构的有效性。
  • 图  1  参考信号重构流程图

    图  2  仿真数据集的获取

    图  3  DNN模型

    图  4  导频数据影响分析

    图  5  CP影响的BER分析

    图  6  信道脉冲响应

    图  7  多径影响分析

    图  8  存在STO影响的BER分析

    图  9  存在CFO影响的BER分析

    图  10  存在限幅噪声影响的BER分析

    图  11  包含所有影响的BER分析

  • [1] WELSCHEN S, LEUCHTMANN P, LEUTHOLD J, et al. Localization of micro unmanned aerial vehicles using digital audio broadcast signals[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [2] PŁOTKA M, MALANOWSKI M, SAMCZYŃSKI P, et al. Passive bistatic radar based on VHF DVB-T signal[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 596–600.
    [3] CHEN Geng, TIAN Bo, GONG Jian, et al. Passive radar channel estimation based on PN sequence of DTMB signal[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–4.
    [4] 赵志欣, 周新华, 洪升, 等. 基于载波域自适应迭代滤波器的无源雷达多径杂波抑制方法[J]. 电子与信息学报, 2018, 40(12): 2841–2847. doi: 10.11999/JEIT180097

    ZHAO Zhixin, ZHOU Xinhua, HONG Sheng, et al. Multipath clutter rejection approach based on carrier domain adaptive iterative filter in passive bistatic radar[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2841–2847. doi: 10.11999/JEIT180097
    [5] 万显荣, 刘玉琪, 程丰, 等. 基于信道分段平滑的外辐射源雷达非平稳杂波抑制方法[J]. 电子与信息学报, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754

    WAN Xianrong, LIU Yuqi, CHENG Feng, et al. Nonstationary clutter suppression method for passive radar based on channel segmentation and smoothing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754
    [6] WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1024–1028. doi: 10.1109/LGRS.2020.2991743
    [7] 吕晓德, 张汉良, 刘忠胜, 等. 基于LTE信号的外辐射源雷达同频基站干扰抑制方法研究[J]. 电子与信息学报, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904

    LÜ Xiaode, ZHANG Hanliang, LIU Zhongsheng, et al. Research on co-channel base station interference suppression method of passive radar based on LTE signal[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904
    [8] ZHENG Xiaokun, JIANG Ting, and XUE Wenling. Improving passive radar target recognition using a convolution composite WiFi preamble[J]. IEEE Sensors Journal, 2020, 20(12): 6470–6477. doi: 10.1109/JSEN.2020.2974234
    [9] GAO Yongchan, LI Hongbin, and HIMED B. Joint transmit and receive beamforming for hybrid active–passive radar[J]. IEEE Signal Processing Letters, 2017, 24(6): 779–783. doi: 10.1109/LSP.2017.2692777
    [10] ZHANG Xun, YI Jianxin, WAN Xianrong, et al. Reference signal reconstruction under oversampling for DTMB-based passive radar[J]. IEEE Access, 2020, 8: 74024–74038. doi: 10.1109/ACCESS.2020.2986589
    [11] 陈赓, 田波, 宫健, 等. 基于深度学习的DTMB外辐射源雷达参考信道估计[J]. 空军工程大学学报: 自然科学版, 2020, 21(2): 61–64. doi: 10.3969/j.issn.1009-3516.2020.02.009

    CHEN Geng, TIAN Bo, GONG Jian, et al. DTMB passive radar reference channel estimation based on deep learning[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 61–64. doi: 10.3969/j.issn.1009-3516.2020.02.009
    [12] HA Changbin and SONG H K. Signal detection scheme based on adaptive ensemble deep learning model[J]. IEEE Access, 2018, 6: 21342–21349. doi: 10.1109/ACCESS.2018.2825463
    [13] YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [14] CHENG Xing, LIU Dejun, ZHU Zhengyu, et al. A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM systems[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–5.
    [15] 赵志欣, 万显荣, 谢锐, 等. 载波频偏对正交频分复用波形外辐射源雷达性能影响的研究[J]. 电子与信息学报, 2013, 35(4): 871–876. doi: 10.3724/SP.J.1146.2012.01011

    ZHAO Zhixin, WAN Xianrong, XIE Rui, et al. Impact of carrier frequency offset on passive bistatic radar with orthogonal frequency division multiplexing waveform[J]. Journal of Electronics &Information Technology, 2013, 35(4): 871–876. doi: 10.3724/SP.J.1146.2012.01011
    [16] KYÖSTI P, MEINILÄ J, HENTILÄ L, et al. IST-4-027756 WINNER II D1.1. 2 v1.2 WINNER II channel models[R]. 2007.
    [17] 张秀艳, 刘珈池. 基于ZC序列的OFDM系统定时同步改进算法[J]. 吉林大学学报: 信息科学版, 2019, 37(6): 610–616. doi: 10.19292/j.cnki.jdxxp.2019.06.004

    ZHANG Xiuyan and LIU Jiachi. Improved timing synchronization algorithm for OFDM system based on ZC sequence[J]. Journal of Jilin University:Information Science Edition, 2019, 37(6): 610–616. doi: 10.19292/j.cnki.jdxxp.2019.06.004
    [18] LI Xiaodong and CIMINI L J. Effects of clipping and filtering on the performance of OFDM[J]. IEEE Communications Letters, 1998, 2(5): 131–133. doi: 10.1109/4234.673657
  • 加载中
图(11)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  344
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2021-06-12
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回