Adaptive Nonlinear Mismatch Calibration Technique for TIADC Based on Memory Polynomial Model
-
摘要: 为了提高时间交织模数转换器(TIADC)的有效分辨率,需要对其通道之间的线性/非线性失配误差进行估计和补偿。该文针对M通道TIADC的带有记忆效应的非线性失配误差提出了一种自适应盲校正算法。通过子通道重构结构(SCR)重构非线性误差信号,并通过滤波降采样最小均方(FDLMS)算法估计非线性失配误差系数。实验仿真结果表明,该方法可以有效校正带有记忆效应的非线性失配误差,并且可以大大降低实现难度和硬件资源消耗。Abstract: To improve the effective resolution of the Time-Interleaved Analog-to-Digital Converter (TIADC), it is necessary to estimate and compensate the linear/non-linear mismatch error between its channels. An adaptive blind correction algorithm is proposed for the non-linear mismatch error of M-channel TIADC with memory effect. The nonlinear error signal is reconstructed through the Sub-Channel Reconstruction (SCR) structure, and the nonlinear mismatch error coefficient is estimated through the Filtered-Down-sampled Least Mean Square (FDLMS) algorithm. Experimental simulation results show that this method can effectively correct the non-linear mismatch error with memory effect, and can greatly reduce the difficulty of implementation and the consumption of hardware resources.
-
图 5 含有2阶非线性误差的四通道TIADC输入无关频带示意图[7]
-
[1] 邓红辉, 闫辉, 肖瑞, 等. 一种全数字前馈式时间交织模数转换器时间误差后台校准算法[J]. 电子与信息学报, 2020, 42(2): 410–417. doi: 10.11999/JEIT190052DENG Honghui, YAN Hui, XIAO Rui, et al. Fully digital feedforward background calibration of time skew for sub-sampling time-interleaved analog-to-digital converter[J]. Journal of Electronics &Information Technology, 2020, 42(2): 410–417. doi: 10.11999/JEIT190052 [2] 徐祥俊, 邹月娴. 基于频域稀疏性的时间交替模数转换器时间相位失配盲测量算法[J]. 电子与信息学报, 2012, 34(9): 2241–2246. doi: 10.3724/SP.J.1146.2012.00029XU Xiangjun and ZOU Yuexian. A blind timing skews estimation algorithm of time-interleaved analog-to-digital converters based on spectra sparsity[J]. Journal of Electronics &Information Technology, 2012, 34(9): 2241–2246. doi: 10.3724/SP.J.1146.2012.00029 [3] LIU Sujuan, LYU Ning, CUI Jiashuai, et al. Improved blind timing skew estimation based on spectrum sparsity and ApFFT in time-interleaved ADC[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 76–83. doi: 10.1109/TIM.2018.2834080 [4] BLACK W C and HODGES D A. Time interleaved converter arrays[J]. IEEE Journal of Solid-State Circuits, 1980, 15(6): 1022–1029. doi: 10.1109/JSSC.1980.1051512 [5] VOGEL C. The impact of combined channel mismatch effects in time-interleaved ADCs[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1): 415–427. doi: 10.1109/TIM.2004.834046 [6] JAMAL S M, FU Daihong, SINGH M P, et al. Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(1): 130–139. doi: 10.1109/TCSI.2003.821302 [7] LIU Sujuan, LÜ Ning, MA Haixiao, et al. Adaptive semiblind background calibration of timing mismatches in a two-channel time-interleaved analog-to-digital converter[J]. Analog Integrated Circuits and Signal Processing, 2017, 90(1): 1–7. doi: 10.1007/s10470-016-0839-5 [8] LIU Sujuan, MA Haixiao, LÜ Ning, et al. Adaptive blind timing mismatch calibration with low power consumption in M-channel time-interleaved ADC[J]. Circuits, Systems, and Signal Processing, 2018, 37(11): 4861–4879. doi: 10.1007/s00034-018-0788-6 [9] HUANG S and LEVY B C. Blind calibration of timing offsets for four-channel time-interleaved ADCs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54(4): 863–876. doi: 10.1109/TCSI.2006.888770 [10] SEO M, RODWELL M J W, and MADHOW U. Comprehensive digital correction of mismatch errors for a 400-msamples/s 80-dB SFDR time-interleaved analog-to-digital converter[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1072–1082. doi: 10.1109/TMTT.2005.843487 [11] SIMOES J B, LANDECK J, and CORREIA C M B A. Nonlinearity of a data-acquisition system with interleaving/multiplexing[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(6): 1274–1279. doi: 10.1109/19.668271 [12] VOGEL C and KUBIN G. Analysis and compensation of nonlinearity mismatches in time-interleaved ADC arrays[C]. 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004. [13] VOGEL C, PAMMER V, and KUBIN G. A novel channel randomization method for time-interleaved ADCs[C]. 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, Canada, 2005: 150–155. [14] WEI Wentao, YE Peng, YANG Kuojun, et al. Compensation of dynamic nonlinear mismatches in time-interleaved analog-to-digital converter[J]. IEICE Electronics Express, 2019, 16(7): 1–6. doi: 10.1587/elex.16.20190020 [15] WEI Wentao, YE Peng, SONG Jinpeng, et al. A behavioral dynamic nonlinear model for time-interleaved ADC based on volterra series[J]. IEEE Access, 2019, 7: 41860–41873. doi: 10.1109/ACCESS.2019.2905365 [16] WANG Yinan, JOHANSSON H, XU Hui, et al. Bandwidth-efficient calibration method for nonlinear errors in M-channel time-interleaved ADCs[J]. Analog Integrated Circuits and Signal Processing, 2016, 86(2): 275–288. doi: 10.1007/s10470-015-0677-x [17] LIU Husheng, WANG Yinan, LI Nan, et al. A calibration method for nonlinear mismatches in M-channel time-interleaved analog-to-digital converters based on hadamard sequences[J]. Applied Sciences, 2016, 6(11): 362. doi: 10.3390/app6110362 [18] LIU Xiangyu, XU Hui, JOHANSSON H, et al. Correlation-based calibration for nonlinearity mismatches in dual-channel TIADCs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(3): 585–589. doi: 10.1109/TCSII.2019.2916430 [19] WANG Yinan, JOHANSSON H, XU Hui, et al. Joint blind calibration for mixed mismatches in two-channel time-interleaved ADCs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(6): 1508–1517. doi: 10.1109/TCSI.2015.2418835 [20] GOODMAN J, MILLER B, HERMAN M, et al. Polyphase nonlinear equalization of time-interleaved analog-to-digital converters[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(3): 362–373. doi: 10.1109/JSTSP.2009.2020243 [21] OPPENHEIM A V, SCHAFER R W, and BUCK J R. Discrete-Time Signal Processing[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1999: 345–387.