高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双向特征融合的快速精确任意形状文本检测

边亮 屈亚东 周宇

边亮, 屈亚东, 周宇. 双向特征融合的快速精确任意形状文本检测[J]. 电子与信息学报, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880
引用本文: 边亮, 屈亚东, 周宇. 双向特征融合的快速精确任意形状文本检测[J]. 电子与信息学报, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880
Liang BIAN, Yadong QU, Yu ZHOU. Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes[J]. Journal of Electronics & Information Technology, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880
Citation: Liang BIAN, Yadong QU, Yu ZHOU. Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes[J]. Journal of Electronics & Information Technology, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880

双向特征融合的快速精确任意形状文本检测

doi: 10.11999/JEIT200880
详细信息
    作者简介:

    边亮:男,1982年生,博士生,研究方向为图像获取与处理

    屈亚东:男,1998年生,硕士生,研究方向为场景图像文字合成、检测与识别

    周宇:男,1992年生,博士生,研究方向为场景图像文字合成、检测与识别

    通讯作者:

    边亮 askquestionbl@163.com

  • 中图分类号: TN911.73

Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes

  • 摘要: 现有的基于分割的场景文本检测方法仍较难区分相邻文本区域,同时网络得到分割图后后处理阶段步骤复杂导致模型检测效率较低。为了解决此问题,该文提出一种新颖的基于全卷积网络的场景文本检测模型。首先,该文构造特征提取器对输入图像提取多尺度特征图。其次,使用双向特征融合模块融合两个平行分支特征的语义信息并促进两个分支共同优化。之后,该文通过并行地预测缩小的文本区域图和完整的文本区域图来有效地区分相邻文本。其中前者可以保证不同的文本实例之间具有区分性,而后者能有效地指导网络优化。最后,为了提升文本检测的速度,该文提出一个快速且有效的后处理算法来生成文本边界框。实验结果表明:在相关数据集上,该文所提出的方法均实现了最好的效果,且比目前最好的方法在F-measure指标上最多提升了1.0%,并且可以实现将近实时的速度,充分证明了该方法的有效性和高效性。
  • 图  1  双向特征融合模块内部网络示意图

    图  2  网络结构图

    图  3  标签生成示意图

    图  4  检测的最终结果

    图  5  不同方法在3个数据集上的速度-精度对比

    图  6  不同数据集模型的测试结果可视化图

    图  7  模型检测错误的一些例子

    表  1  双向特征融合模块及整体文本框分支在不同基础网络下的性能增益及检测效率

    基础网络双向特征
    融合模块
    整体文本区
    域预测分支
    评价指标(%)FPS
    准确率召回率F综合指标
    ResNet-50××87.482.785.017.4
    ResNet-50×87.883.185.416.8
    ResNet-5088.083.585.716.0
    ResNet-18××86.679.883.131.0
    ResNet-18×85.980.883.330.5
    ResNet-1886.581.283.829.6
    下载: 导出CSV

    表  2  TotalText数据集模型性能对比

    方法评价指标(%)FPS
    准确率召回率F综合指标
    EAST*[12]36.250.042.0
    TextSnake[2]74.582.778.4
    MSR[21]74.883.879.04.3
    PSENet-1s[7]78.084.080.93.9
    Textfield[22]81.279.980.66
    LOMO[13]87.679.383.3
    CRAFT[20]87.679.983.6
    DB[9]87.182.584.732
    本文方法88.083.585.716
    下载: 导出CSV

    表  3  MSRA-TD500数据集模型性能对比

    方法评价指标(%)FPS
    准确率召回率F综合指标
    RRPN[23]82.068.074.0
    MCN[24]88.079.083.0
    PixelLink[6]83.073.277.83.0
    TextSnake[2]83.273.978.31.1
    CRAFT[20]88.278.282.98.6
    Tian等人[32]84.281.782.9
    DB[9]91.579.284.932.0
    本文方法91.181.385.917.1
    下载: 导出CSV

    表  4  CTW1500数据集模型性能对比

    方法评价指标(%)FPS
    准确率召回率F综合指标
    CTPN[25]60.453.856.97.14
    EAST[12]78.749.160.421.2
    Seglink[11]42.340.040.810.7
    TextSnake[2]67.985.375.61.1
    PSENet-1s[7]84.879.782.23.9
    Tian等人[3]77.882.780.13
    LOMO[13]69.689.278.44.4
    DB[9]86.980.283.422
    本文方法84.782.383.515.2
    下载: 导出CSV
  • 黄剑华, 承恒达, 吴锐, 等. 基于模糊同质性映射的文本检测方法[J]. 电子与信息学报, 2008, 30(6): 1376–1380.

    HUANG Jianhua, CHENG Hengda, WU Rui, et al. A new approach for text detection using fuzzy homogeneity[J]. Journal of Electronics &Information Technology, 2008, 30(6): 1376–1380.
    LONG Shangbang, RUAN Jiaqiang, ZHANG Wenjie, et al. Textsnake: A flexible representation for detecting text of arbitrary shapes[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 19–35.
    TIAN Zhuotao, SHU M, LYU P, et al. Learning shape-aware embedding for scene text detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4229–4238.
    HUANG Weilin, QIAO Yu, and TANG Xiaoou. Robust scene text detection with convolution neural network induced MSER trees[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 497–511.
    JADERBERG M, VEDALDI A, and ZISSERMAN A. Deep features for text spotting[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 512–528.
    DENG Dan, LIU Haifeng, LI Xuelong, et al. Pixellink: Detecting scene text via instance segmentation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 6773–6780.
    WANG Wenhai, XIE Enze, LI Xiang, et al. Shape robust text detection with progressive scale expansion network[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9328–9337.
    XIE Enze, ZANG Yuhang, SHAO Shuai, et al. Scene text detection with supervised pyramid context network[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 9038–9045.
    LIAO Minghui, WAN Zhaoyi, YAO Cong, et al. Real-time scene text detection with differentiable binarization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11474–11481. doi: 10.1609/aaai.v34i07.6812
    LIAO Minghui, SHI Baoguang, and BAI Xiang. Textboxes++: A single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3676–3690. doi: 10.1109/TIP.2018.2825107
    SHI Baoguang, BAI Xiang, and BELONGIE S. Detecting oriented text in natural images by linking segments[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3482–3490.
    ZHOU Xinyu, YAO Cong, WEN He, et al. EAST: An efficient and accurate scene text detector[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2642–2651.
    ZHANG Chengquan, LIANG Borong, HUANG Zuming, et al. Look more than once: An accurate detector for text of arbitrary shapes[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10544–10553.
    DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773.
    谢金宝, 侯永进, 康守强, 等. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815

    XIE Jinbao, HOU Yongjin, KANG Shouqiang, et al. Multi-feature fusion based on semantic understanding attention neural network for Chinese text categorization[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
    GUPTA A, VEDALDI A, and ZISSERMAN A. Synthetic data for text localisation in natural images[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2315–2324.
    LIU Yuliang, JIN Lianwen, ZHANG Shuaitao, et al. Curved scene text detection via transverse and longitudinal sequence connection[J]. Pattern Recognition, 2019, 90: 337–345.
    CH’NG C K and CHAN C S. Total-text: A comprehensive dataset for scene text detection and recognition[C]. The 2017 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017: 935–942.
    YAO Cong, BAI Xiang, LIU Wenyu, et al. Detecting texts of arbitrary orientations in natural images[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1083–1090.
    BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9357–9366.
    XUE Chuhui, LU Shijian, ZHANG Wei. MSR: Multiscale shape regression for scene text detection[C]. KRAUS S. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 989–995.
    XU Yongchao, WANG Yukang, ZHOU Wei, et al. Textfield: Learning a deep direction field for irregular scene text detection[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5566–5579.
    MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitraryoriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111–3122.
    LIU Zichuan, LIN Guosheng, YANG Sheng, et al. Learning markov clustering networks for scene text detection[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6936–6944.
    TIAN Zhi, HUANG Weilin, HE Tong, et al. Detecting text in natural image with connectionist text proposal network[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 56–72.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  397
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2021-01-29
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回