高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XGBoost的混合模式门级硬件木马检测方法

张颖 李森 陈鑫 姚嘉祺 毛志明

张颖, 李森, 陈鑫, 姚嘉祺, 毛志明. 基于XGBoost的混合模式门级硬件木马检测方法[J]. 电子与信息学报, 2021, 43(10): 3050-3057. doi: 10.11999/JEIT200874
引用本文: 张颖, 李森, 陈鑫, 姚嘉祺, 毛志明. 基于XGBoost的混合模式门级硬件木马检测方法[J]. 电子与信息学报, 2021, 43(10): 3050-3057. doi: 10.11999/JEIT200874
Ying ZHANG, Shen LI, Xin CHEN, Jiaqi YAO, Zhiming MAO. Hybrid Multi-level Hardware Trojan Detection Method for Gate-level Netlists Based on XGBoost[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3050-3057. doi: 10.11999/JEIT200874
Citation: Ying ZHANG, Shen LI, Xin CHEN, Jiaqi YAO, Zhiming MAO. Hybrid Multi-level Hardware Trojan Detection Method for Gate-level Netlists Based on XGBoost[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3050-3057. doi: 10.11999/JEIT200874

基于XGBoost的混合模式门级硬件木马检测方法

doi: 10.11999/JEIT200874
基金项目: 国家自然科学基金(61701228, 61106029),模拟集成电路重点实验室基金(61428020304),航空科学基金(20180852005)
详细信息
    作者简介:

    张颖:女,1977年生,博士,讲师,研究方向为集成电路设计、验证与测试、硬件安全

    李森:男,1995年生,硕士生,研究方向为集成电路验证与测试、硬件安全

    陈鑫:男,1982年生,博士,副教授,研究方向为数字集成电路设计

    姚嘉祺:男,1996年生,硕士生,研究方向为集成电路验证与测试、硬件安全

    毛志明:男,1997年生,硕士生,研究方向为集成电路验证与测试

    通讯作者:

    张颖 tracy403@nuaa.edu.cn

  • 中图分类号: TP309.5; TN47

Hybrid Multi-level Hardware Trojan Detection Method for Gate-level Netlists Based on XGBoost

Funds: The National Natural Science Foundation of China (61701228, 61106029), The Science and Technology on Analog Integrated Circuit Laboratory (61428020304), The AeronauticalScience Foundation of China (20180852005)
  • 摘要: 针对恶意的第三方厂商在电路设计阶段中植入硬件木马的问题,该文提出一种基于XGBoost的混合模式门级硬件木马检测方法。该检测方法将电路的每个线网类型作为节点,采用混合模式3层级的检测方式。首先,基于提取的电路静态特征,利用XGBoost算法实现第1层级的检测。继而,通过分析扫描链的结构特征,对第1层级分离得到的正常电路继续进行第2层级的面向扫描链中存在木马电路的静态检测。最后,在第3层级采用动态检测方法进一步提升检测的准确性。Trust-Hub基准测试集的实测结果表明,该方法与现有的其他检测方法相比具有较优的木马检测率,可达到94.0%的平均真阳率(TPR)和99.3%的平均真阴率(TNR)。
  • 图  1  3级触发网络特征示意图

    图  2  环形振荡器结构特征示意图

    图  3  基于XGBoost的混合多层级硬件木马检测框图

    图  4  扫描链中木马电路结构特征

    图  5  特征有效性箱型图结果对比

    图  6  两种方法检测结果比较

    表  1  各层级检测结果详细参数

    层级
    电路
    第1层级第2层级第3层级
    测试电路TNFPFNTPTPRTNRTNFPFNTPTPRTNRTNFPFNTPTPRTNR
    Trust-Hubs38417-T100546110470.6360.998546110470.6360.99854611001110.998
    s38417-T2005462901110.9985462901110.9985462901110.998
    s38417-T300546714430.9150.999546713440.9360.999546712430.9560.999
    s35932-T1005867001711.00058670017115867001711
    s35932-T20058579480.6670.999585792100.8330.999585792100.8330.999
    s35932-T300586242340.9440.9995862403610.9995862403610.999
    s15850-T10021225811150.5770.9732122589170.6540.9732122589170.6540.973
    RS232-T1000238203710.992238203710.992238203710.992
    RS232-T110024276320.8420.97224276320.8420.97224276320.8420.972
    RS232-T120025213300.9090.99625213300.9090.99625213300.9090.996
    RS232-T1300251202710.992251202710.992251202710.992
    RS232-T1400237204410.992237204410.992237204410.992
    RS232-T1500245203810.992245203810.992245203810.992
    RS232-T160025023220.8800.99225023220.8800.99225021240.9600.992
    平均值TPR:88.4% TNR:99.3%TPR:90.6% TNR:99.3%TPR:94.0% TNR:99.3%
    DeTrustDT-1575534170.8100.916575534170.8100.916575404190.8260.920
    DT-2570495180.7830.921570495180.7830.921570474180.8180.924
    DT-3552514150.7890.915552514150.7890.915552464170.8100.923
    DT-4582555190.7920.914582555190.7920.914582525210.8080.918
    DT-5563493150.8330.920563493150.8330.920563463160.8420.924
    平均值TPR:80.1% TNR:91.7%TPR:80.1% TNR:91.7%TPR:82.1% TNR:92.2%
    平均值TPR:84.2% TNR:95.5%TPR:85.3% TNR:95.5%TPR:88.1% TNR:95.8%
    下载: 导出CSV
  • [1] ELNAGGAR R, CHAKRABARTY K, and TAHOORI M B. Hardware Trojan detection using changepoint-based anomaly detection techniques[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(12): 2706–2719. doi: 10.1109/TVLSI.2019.2925807
    [2] CHEN Jinghui, DONG Chen, ZHANG Fan, et al. A Hardware-Trojans detection approach based on eXtreme Gradient Boosting[C]. 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2019: 69–73.
    [3] 张毅军, 张晓, 林少锋, 等. 基于功耗特征的硬件木马检测方法[J]. 电脑知识与技术, 2019, 15(31): 15–16, 26.

    ZHANG Yijun, ZHANG Xiao, LIN Shaofeng, et al. Hardware Trojan detection method based on power consumption features[J]. Computer Knowledge and Technology, 2019, 15(31): 15–16, 26.
    [4] SAAD W, SANJAB A, WANG Yunpeng, et al. Hardware Trojan detection game: A prospect-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7697–7710. doi: 10.1109/TVT.2017.2686853
    [5] 佟鑫, 李莹, 陈岚. SVM算法在硬件木马旁路分析检测中的应用[J]. 电子与信息学报, 2020, 42(7): 1643–1651. doi: 10.11999/JEIT190532

    TONG Xin, LI Ying, and CHEN Lan. Application of SVM machine learning to hardware Trojan detection using side-channel analysis[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1643–1651. doi: 10.11999/JEIT190532
    [6] 王晓晗, 王韬, 李雄伟, 等. 基于人工蜂群的硬件木马测试向量生成方法[J]. 上海交通大学学报, 2019, 53(10): 1218–1224.

    WANG Xiaohan, WANG Tao, LI Xiongwei, et al. Test pattern generation method for hardware Trojan detection based on artificial bee colony[J]. Journal of Shanghai Jiaotong University, 2019, 53(10): 1218–1224.
    [7] LIU Yanjiang, ZHAO Yiqiang, HE Jiaji, et al. A statistical test generation based on mutation analysis for improving the Hardware Trojan detection[J]. Journal of Circuits, Systems and Computers, 2020, 29(3): 2050049. doi: 10.1142/S0218126620500498
    [8] SALMANI H. COTD: Reference-free hardware Trojan detection and recovery based on controllability and observability in gate-level netlist[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(2): 338–350. doi: 10.1109/TIFS.2016.2613842
    [9] CUI Xiaotong, KOOPAHI E, WU Kaijie, et al. Hardware Trojan detection using the order of path delay[J]. ACM Journal on Emerging Technologies in Computing Systems, 2018, 14(3): 33.
    [10] WAKSMAN A, SUOZZO M, and SETHUMADHAVAN S. FANCI: Identification of stealthy malicious logic using Boolean functional analysis[C]. The 2013 ACM SIGSAC Conference on Computer & Communications Security (ACM-CCS), Berlin, Germany, 2013: 697–708.
    [11] HASEGAWA K, OYA M, YANAGISAWA M, et al. Hardware Trojans classification for gate-level netlists based on machine learning[C]. 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 2016: 203–206.
    [12] HASEGAWA K, YANAGISAWA M, and TOGAWA N. Hardware Trojans classification for gate-level netlists using multi-layer neural networks[C]. 2017 IEEE 23rd International Symposium on On-line Testing and Robust System Design, Thessaloniki, Greece, 2017: 227–232.
    [13] HASEGAWA K, YANAGISAWA M, and TOGAWA N. Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS 2017), Baltimore, USA, 2017: 1–4.
    [14] HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method utilizing boundary net structures[C]. 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2018: 1–4.
    [15] Trust-Hub [EB/OL]. http://www.trust-hub.org, 2021.
    [16] ZHANG Jie, YUAN Feng, and XU Qiang. DeTrust: Defeating hardware trust verification with stealthy implicitly-triggered hardware Trojans[C]. The 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, USA, 2014: 153–166.
    [17] HUANG Zhao, WANG Quan, CHEN Yin, et al. A survey on machine learning against hardware Trojan attacks: Recent advances and challenges[J]. IEEE Access, 2020, 8: 10796–10826. doi: 10.1109/ACCESS.2020.2965016
    [18] BHUNIA S, HSIAO M S, BANGA M, et al. Hardware Trojan attacks: Threat analysis and countermeasures[J]. Proceedings of the IEEE, 2014, 102(8): 1229–1247. doi: 10.1109/JPROC.2014.2334493
    [19] HU Wei, CHANG C H, SENGUPTA A, et al. An overview of hardware security and trust: Threats, countermeasures, and design tools[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1010–1038. doi: 10.1109/TCAD.2020.3047976
    [20] CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785–794.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  934
  • HTML全文浏览量:  510
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回