高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非正交多址接入的移动边缘计算安全节能联合资源分配

郝万明 孙继威 孙钢灿 朱政宇 周一青

郝万明, 孙继威, 孙钢灿, 朱政宇, 周一青. 基于非正交多址接入的移动边缘计算安全节能联合资源分配[J]. 电子与信息学报, 2021, 43(12): 3580-3587. doi: 10.11999/JEIT200872
引用本文: 郝万明, 孙继威, 孙钢灿, 朱政宇, 周一青. 基于非正交多址接入的移动边缘计算安全节能联合资源分配[J]. 电子与信息学报, 2021, 43(12): 3580-3587. doi: 10.11999/JEIT200872
Wanming HAO, Jiwei SUN, Gangcan SUN, Zhengyu ZHU, Yiqing ZHOU. Secure Energy-efficient Resource Allocation in Mobile Edge Computing Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3580-3587. doi: 10.11999/JEIT200872
Citation: Wanming HAO, Jiwei SUN, Gangcan SUN, Zhengyu ZHU, Yiqing ZHOU. Secure Energy-efficient Resource Allocation in Mobile Edge Computing Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3580-3587. doi: 10.11999/JEIT200872

基于非正交多址接入的移动边缘计算安全节能联合资源分配

doi: 10.11999/JEIT200872
基金项目: 国家自然科学基金(62101499, 61801434),河南省创新示范专项基金(201111212300),郑州市重大科技创新专项基金(2019CXZX0037)
详细信息
    作者简介:

    郝万明:男,1988年生,讲师,博士,研究方向为毫米波、无线通信、NOMA、边缘缓存和无线携能通信等

    孙继威:男,1998年生,硕士生,研究方向为移动边缘计算、安全通信等

    孙钢灿:男,1977年生,教授,研究方向为通信信号处理、通信信号关键参数盲估计、调制方式识别、机器人和智慧物流等

    朱政宇:男,1988年生,讲师,博士,研究方向为无线通信和信号处理、5G、物联网、机器学习、大规模MIMO、毫米波通信、无人机通信、物理层安全、无线协作网络、凸优化技术和携能传输等

    周一青:女,1975年生,研究员,研究方向为无线移动通信技术

    通讯作者:

    朱政宇 zhuzhengyu6@gmail.com

  • 中图分类号: TN929.5; TN915.08

Secure Energy-efficient Resource Allocation in Mobile Edge Computing Based on Non-Orthogonal Multiple Access

Funds: The National Natural Science Foundation of China (62101499, 61801434), The Innovation Demonstration Project of Henan Province (201111212300), The Science and Technology Innovation Major Project of Zhengzhou (2019CXZX0037)
  • 摘要: 为提高基于非正交多址接入(NOMA)的移动边缘计算(MEC)系统中计算任务部分卸载时的安全性,该文在存在窃听者情况下研究MEC网络的物理层安全,采用保密中断概率来衡量计算卸载的保密性能,考虑发射功率约束、本地任务计算约束和保密中断概率约束,同时引入能耗权重因子以平衡传输能耗和计算能耗,最终实现系统能耗加权和最小。在满足两个用户优先级情况下,为降低系统开销,提出一种联合任务卸载和资源分配机制,通过基于二分搜索的迭代优化算法寻求问题变换后的最优解,并获得最优的任务卸载和功率分配。仿真结果表明,所提算法可有效降低系统能耗。
  • 图  1  系统模型

    图  2  两用户能耗加权和随迭代次数的变化关系

    图  3  两用户能耗加权和随每个用户计算任务的变化关系

    图  4  两用户计算能耗和卸载能耗随能耗权重因子比例的变化关系

    图  5  两用户能耗加权和随能耗权重因子的变化关系

    表  1  问题P2的二等分迭代优化算法

     初始化:$C_k^{{\rm{loc}}},C_k^{{\rm{ser}}},f_k^{{\rm{loc}}},f_k^{{\rm{ser}}},{\delta ^{{\rm{loc}}}},{\delta ^{{\rm{ser}}}},$ $B,T,\alpha ,\varepsilon ,{\gamma _{{\rm{BS}},k}}$, 迭代次 数$x$, ${ {{X} }_{\max } }$, $l_k^{{\rm{MIN}}} = 0$, $l_k^{{\rm{MAX}}} = 0.7{L_k}$, 精度$\tau $
     (1) while $l_k^{ {\rm{max} } } - l_k^{ {\rm{min} } } \ge \tau$do
        定义${l_1}{\rm{ = } }\dfrac{ {l_1^{ {\rm{min} } } + l_1^{ {\rm{max} } } }}{2}$
        根据式(21)计算${R^*_{ {\rm{s} },1} }$
        根据式(22a)计算${p^*_1}$
        根据式(17a)计算${P_{{\rm{so}},1}}$
        if ${P_{ {\rm{so} },1} } \le \varepsilon$
        $l_1^{{\rm{MIN}}}{\rm{ = }}{l_1}$
        else
        $l_1^{{\rm{MAX}}}{\rm{ = }}{l_1}$
     (2) until ${l_1}$满足式(7)和$x$=${ {{X} }_{\max } }$
     (3) $x$=$x + 1$
     (4) while $l_k^{ {\rm{max} } } - l_k^{ {\rm{min} } } \ge \tau$ do
        定义${l_2}{\rm{ = } }\dfrac{ {l_2^{ {\rm{min} } } + l_2^{ {\rm{max} } } }}{2}$
        根据式(21)计算${R^*_{ {\rm{s} },2} }$
        根据式(22b)计算${p^*_2}$
        根据式(17b)计算${P_{{\rm{so}},2}}$
        if $\dfrac{{C_2^{{\rm{loc}}}{l_2}}}{{f_2^{{\rm{loc}}}}} \le T$
        $l_2^{ {\rm{min} } }{\rm{ = } }{l_2}$
        else
        $l_2^{ {\rm{max} } }{\rm{ = } }{l_2}$
     (5) until ${l_2}$满足式(7)和$x$=${{{X}}_{\max }}$
     (6) $x$=$x + 1$
     (7) end while
    下载: 导出CSV

    表  2  仿真参数

    参数数值
    任务计算比特${L_k}$0.5~2.5$ \times $105 bit
    计算任务所需CPU周期$C_k^{{\rm{loc}}},C_k^{{\rm{ser}}}$1000 cycles/bit
    移动终端计算能力$f_k^{{\rm{loc}}}$1.415 GHz
    MEC服务器计算能力$f_k^{{\rm{ser}}}$3.3 GHz
    移动终端CPU每周期能耗${\delta ^{{\rm{loc}}}}$1.4265$ \times $10–4 W
    MEC服务器CPU每周期能耗${\delta ^{{\rm{ser}}}}$5.6265$ \times $10–4 W
    路径损耗指数$\alpha $4
    系统最大发射功率$p_k^{\max }$0.1 W
    能耗权重因子$\eta $10000 J/s
    最大保密中断概率$\varepsilon $5%
    用户$k$到基站的距离${d_{{\rm{BS}},k}}$60 m
    用户$k$到窃听者的距离${d_{{\rm{e}},k}}$100 m
    噪声方差$\sigma _{{\rm{BS}}}^2,\sigma _{\rm{e}}^2$–105 dBm/Hz
    系统带宽$B$1 MHz
    时延预算$T$0.1 s
    下载: 导出CSV
  • [1] ZENG Ming, HAO Wanming, DOBRE O A, et al. Delay minimization for massive MIMO assisted mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6788–6792. doi: 10.1109/TVT.2020.2979434
    [2] NING Bing, HAO Wanming, ZHANG Aihua, et al. Energy efficiency–delay tradeoff for a cooperative NOMA system[J]. IEEE Communications Letters, 2019, 23(4): 732–735. doi: 10.1109/LCOMM.2019.2900320
    [3] WANG Xinxin, WU Wei, LÜ Bin, et al. Delay minimization for secure NOMA mobile-edge computing[C]. 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 2019: 1529–1534. doi: 10.1109/ICCT46805.2019.8947270.
    [4] 唐伦, 肖娇, 赵国繁, 等. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006

    TANG Lun, XIAO Jiao, ZHAO Guofan, et al. Energy efficiency based dynamic resource allocation algorithm for cellular vehicular based on non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006
    [5] DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [6] DING Zhiguo, FAN Pingzhi, and VINCENT POOR H. Impact of non-orthogonal multiple access on the offloading of mobile edge computing[J]. IEEE Transactions on Communications, 2019, 67(1): 375–390. doi: 10.1109/TCOMM.2018.2870894
    [7] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [8] XIAO Zhu, DAI Xingxia, JIANG Hongbo et al. Vehicular task offloading via heat-aware MEC cooperation using game-theoretic method[J]. IEEE Internet of Things Journal, 2020, 7(3): 2038–2052. doi: 10.1109/JIOT.2019.2960631
    [9] FANG Sangsha, CHEN Hongyang, KHAN Z, et al. On the content delivery efficiency of NOMA assisted vehicular communication networks with delay constraints[J]. IEEE Wireless Communications Letters, 2020, 9(6): 847–850. doi: 10.1109/LWC.2020.2973138
    [10] WANG Feng, XU Jie, and DING Zhiguo. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems[J]. IEEE Transactions on Communications, 2019, 67(3): 2450–2463. doi: 10.1109/TCOMM.2018.2881725
    [11] HUA Meihui, TIAN Hui, NI Wanli, et al. Energy efficient task offloading in NOMA-based mobile edge computing system[C]. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019: 1–7. doi: 10.1109/PIMRC.2019.8904347.
    [12] DING Zhiguo, XU Jie, DOBRE O A, et al. Joint power and time allocation for NOMA–MEC offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6207–6211. doi: 10.1109/TVT.2019.2907253
    [13] YE Yinghui, HU R Q, LU Guangyue, et al. Enhance latency-constrained computation in MEC networks using uplink NOMA[J]. IEEE Transactions on Communications, 2020, 68(4): 2409–2425. doi: 10.1109/TCOMM.2020.2969666
    [14] KIANI A and ANSARI N. Edge computing aware NOMA for 5G networks[J]. IEEE Internet of Things Journal, 2018, 5(2): 1299–1306. doi: 10.1109/JIOT.2018.2796542
    [15] WU Wei, ZHOU Fuhui, HU R Q, et al. Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks[J]. IEEE Transactions on Communications, 2020, 68(1): 493–505. doi: 10.1109/TCOMM.2019.2949994
    [16] HE Biao, LIU An, YANG Nan, et al. On the design of secure non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2196–2206. doi: 10.1109/JSAC.2017.2725698
    [17] ZHENG Tongxing, WANG Huiming, and DENG Hao. Improving anti-eavesdropping ability without eavesdropper’s CSI: A practical secure transmission design perspective[J]. IEEE Wireless Communications Letters, 2018, 7(6): 946–949. doi: 10.1109/LWC.2018.2840152
    [18] DING Zhiguo, YANG Zheng, FAN Pingzhi, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users[J]. IEEE Signal Processing Letters, 2014, 21(12): 1501–1505. doi: 10.1109/LSP.2014.2343971
    [19] 3rd Generation Partnership Project. Study on downlink multiuser superposition transmission for LTE[R]. 3GPP TSG RAN #67. RP-150496, 2015.
    [20] LI Linfeng, KUANG Zhufang, and LIU Anfeng. Energy efficient and low delay partial offloading scheduling and power allocation for MEC[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8761160.
    [21] SUN Yan, NG D W K, ZHU Jun, et al. Robust and secure resource allocation for full-duplex MISO multicarrier NOMA systems[J]. IEEE Transactions on Communications, 2018, 66(9): 4119–4137. doi: 10.1109/TCOMM.2018.2830325
    [22] ZHOU Xiangyun, MCKAY M R, MAHAM B, et al. Rethinking the secrecy outage formulation: A secure transmission design perspective[J]. IEEE Communications Letters, 2011, 15(3): 302–304. doi: 10.1109/LCOMM.2011.011811.102433
    [23] MAO Yuyi, ZHANG Jun, and LETAIEF K B. Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925615.
    [24] LIU Yuanwei, QIN Zhijin, ELKASHLAN M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1656–1672. doi: 10.1109/TWC.2017.2650987
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  689
  • HTML全文浏览量:  542
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-04-17
  • 网络出版日期:  2021-05-10
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回