高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于奇偶校验码级联极化码的低复杂度译码算法

刘顺兰 王燕

刘顺兰, 王燕. 一种基于奇偶校验码级联极化码的低复杂度译码算法[J]. 电子与信息学报, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840
引用本文: 刘顺兰, 王燕. 一种基于奇偶校验码级联极化码的低复杂度译码算法[J]. 电子与信息学报, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840
LIU Shunlan, WANG Yan. A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes[J]. Journal of Electronics & Information Technology, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840
Citation: LIU Shunlan, WANG Yan. A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes[J]. Journal of Electronics & Information Technology, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840

一种基于奇偶校验码级联极化码的低复杂度译码算法

doi: 10.11999/JEIT200840
基金项目: 国家自然科学基金(U1809201),浙江省自然科学基金(LY18F010013)
详细信息
    作者简介:

    刘顺兰:女,1965年生,教授,研究方向为信息与信号处理、无线通信

    王燕:女,1997年生,硕士生,研究方向为无线协作通信、信道编码

    通讯作者:

    刘顺兰 liushunlan@hdu.edu.cn

  • 中图分类号: TN911.22

A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes

Funds: The National Natural Science Foundation of China (U1809201), The Zhejiang Provincial Natural Science Foundation (LY18F010013)
  • 摘要: 极化码作为一种纠错码,具有较好的编译码性能,已成为 5G 短码控制信道的标准编码方案。但在码长较短时,其性能不够优异。作为一种新型级联极化码,奇偶校验码与极化码的级联方案提高了有限码长的性能,但是其译码算法有着较高的复杂度。该文针对这一问题,提出一种基于奇偶校验码级联极化码的串行抵消局部列表译码(PC-PSCL)算法,该算法在编码前进行外码构造,通过高斯近似(GA)得到的子信道错误概率选取较不可靠的信息位,对选取的较不可靠的信息位进行串行抵消列表(SCL)译码和奇偶校验,其余信息比特仅进行串行抵消(SC)译码。仿真结果表明,在高斯信道下,当码长为512,码率为1/2,误帧率为10–3,最大列表长度为8时,该文提出的低复杂度译码算法比SCL译码算法获得了0.5 dB的增益;与基于奇偶校验的SCL译码算法性能相近,但是空间复杂度和时间复杂度分别降低了38.09%, 15.63%。
  • 图  1  PC-Polar级联方案

    图  2  PC-PSCL译码算法外码构造示意图

    图  3  含有外码块码长为N的极化码示意图

    图  4  N = 256信道极化示意图

    图  5  PC-PSCL译码算法流程图

    图  6  在不同译码算法下存储空间占用情况

    图  7  不同码长、不同${L_p}$情况下译码算法的性能

    图  8  N = 256时不同b译码算法的性能

    表  1  外码块T的取值

    外码块取值
    ${{\boldsymbol{T}}_1}$$\left\{ {56,60,62,63,64} \right\}$
    ${{\boldsymbol{T}}_2}$$\left\{ {80,88,92,93,94,95,103,104,106,107,108,109,110,111,114,115,116,117,118,119} \right\}$
    ${{\boldsymbol{T}}_3}$$\left\{ {121,144,150,151,152,154,155,156,157,158,159} \right\}$
    ${{\boldsymbol{T}}_4}$$\{ 164,166,167,168,170,171,173,178,179,181,185,196,198,$
    $199,201,202,203,205,209,210,211,213,217\} $
    ${{\boldsymbol{T}}_5}$$\left\{ {225,226,227,229,233} \right\}$
    下载: 导出CSV

    表  2  3种译码算法复杂度对比

    译码算法空间复杂度时间复杂度
    SC译码$O(N)$$O(N{\text{lo}}{{\text{g}}_2}N)$
    PC-SCL译码$O({L_{{\text{max}}}}N)$$O({L_{{\text{max}}}}N{\text{lo}}{{\text{g}}_2}N)$
    PC-PSCL译码$O({L_{ {\text{max} } } }T_{i\max }^{'} + N{L_p})$$O(({L_{{\text{max}}}}T' + {L_p}(N - T')){\text{lo}}{{\text{g}}_2}N)$
    下载: 导出CSV

    表  3  N = 512时两种译码算法复杂度对比

    译码算法${L_p}$时间复杂度空间复杂度
    PC-PSCL126784 (27.34%)1000(75.59%)
    228224(23.44%)1512(63.09%)
    431104(15.63%)2536 (38.09%)
    PC-SCL368644096
    下载: 导出CSV

    表  4  N = 256时两种译码算法复杂度对比

    译码算法$ b $时间复杂度空间复杂度
    PC-PSCL20%11968(26.95%)1136(44.53%)
    30%13024(20.51%)1176(42.58%)
    50%13152(19.73%)1240(39.45%)
    PC-SCL163842048
    下载: 导出CSV
  • [1] ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    [2] HONG S N, HUI D, and MARIĆ I. Capacity-achieving rate-compatible polar codes[J]. IEEE Transactions on Information Theory, 2017, 63(12): 7620–7632. doi: 10.1109/TIT.2017.2756668
    [3] BIOGLIO V and LAND I. Polar-code construction of Golay codes[J]. IEEE Communications Letters, 2018, 22(3): 466–469. doi: 10.1109/LCOMM.2018.2793273
    [4] 张孝甜, 赵生妹, 郑宝玉. 无线信道中的Polar码协商[J]. 信号处理, 2018, 34(7): 793–798. doi: 10.16798/j.issn.1003-0530.2018.07.005

    ZHANG Xiaotian, ZHAO Shengmei, and ZHENG Baoyu. Key reconciliation using Polar code in wireless channel[J]. Journal of Signal Processing, 2018, 34(7): 793–798. doi: 10.16798/j.issn.1003-0530.2018.07.005
    [5] 3GPP. 3GPP TS 38.212 v15.0. 0-2017 Multiplexing and channel coding (Release 15)[S]. Valbonne: 3GPP, 2017.
    [6] TAL I and VARDY A. List decoding of polar codes[J]. IEEE Transactions on Information Theory, 2015, 61(5): 2213–2226. doi: 10.1109/TIT.2015.2410251
    [7] CHEN Kai, NIU Kai, and LIN Jiaru. List successive cancellation decoding of polar codes[J]. Electronics Letters, 2012, 48(9): 500–501. doi: 10.1049/el.2011.3334
    [8] ERCAN F, CONDO C, HASHEMI S A, et al. On error-correction performance and implementation of polar code list decoders for 5G[C]. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2017: 443–449.
    [9] NIU Kai and CHEN Kai. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668–1671. doi: 10.1109/LCOMM.2012.090312.121501
    [10] 江涛, 王涛, 屈代明, 等. 极化码与奇偶校验码的级联编码: 面向5G及未来移动通信的编码方案[J]. 数据采集与处理, 2017, 32(3): 463–468. doi: 10.16337/j.1004-9037.2017.03.004

    JIANG Tao, WANG Tao, QU Daiming, et al. Concatenated coding of polar codes and parity-check codes: Coding scheme for 5G and future mobile communications[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 463–468. doi: 10.16337/j.1004-9037.2017.03.004
    [11] MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519–521. doi: 10.1109/LCOMM.2009.090428
    [12] TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221–3227. doi: 10.1109/TCOMM.2012.081512.110872
    [13] SCHÜRCH C. A partial order for the synthesized channels of a polar code[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 220–224.
    [14] HE Gaoning, BELFIORE J C, LAND I, et al. Beta-expansion: A theoretical framework for fast and recursive construction of polar codes[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    [15] BALATSOUKAS-STIMMING A, PARIZI M B, and BURG A. LLR-based successive cancellation list decoding of polar codes[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3903–3907.
    [16] 王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
    [17] CHUNG S Y, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657–670. doi: 10.1109/18.910580
    [18] CHEN Kai, NIU Kai, and LIN Jiaru. A reduced-complexity successive cancellation list decoding of polar codes[C]. 2013 IEEE 77th Vehicular Technology Conference, Dresden, Germany, 2013: 1–5.
    [19] ZHANG Zhaoyang, ZHANG Liang, WANG Xianbin, et al. A split-reduced successive cancellation list decoder for polar codes[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 292–302. doi: 10.1109/JSAC.2015.2504321
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  544
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2021-07-18
  • 录用日期:  2021-07-18
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回