Study on the Constructions of Balanced Optimal Binary Sequences with Period 4v (almost)
-
摘要: 具有理想自相关特性的序列在无线通信、雷达以及密码学中具有重要的作用。因此为了扩展更多可应用于通信系统的理想序列,该文基于2阶分圆类和中国剩余定理,提出3类新的周期为
$T = 4v$ (v是奇素数)平衡或几乎平衡理想二进制序列构造方法。构造所得序列的周期自相关函数满足:当$v \equiv 3{\text{ }}\left( {{\rm{mod}} 4} \right)$ 时,序列的周期自相关函数旁瓣值取值集合为$\left\{ {0, - 4} \right\}$ 或$\left\{ {0, 4, - 4} \right\}$ ;当$v \equiv 1{\text{ }}\left( {{\rm{mod}} 4} \right)$ 时,相应的取值集合为$\left\{ {0, 4, - 4} \right\}$ 。通过该文方法拓展了周期为4$v$ 平衡理想二进制序列的存在范围,从而可为工程应用提供更多性能优良的理想序列。Abstract: Sequences with optimal autocorrelation property have important roles in wireless communication, radar and cryptography. Therefore, in order to expand more ideal sequences that can be applied to communication systems, based on cyclotomy of order 2 and Chinese remainder theorem, three new constructions of balanced or almost balanced binary sequences of period$T = 4v$ (v is odd prime) are presented in this paper. The periodic autocorrelation function of the constructed sequence satisfies: when$v \equiv 3{\text{ }}\left( {{\rm{mod}} 4} \right)$ , the out-of-phase autocorrelation value set of the sequence is$\left\{ {0, - 4} \right\}$ or$\left\{ {0, 4, - 4} \right\}$ ; when$v \equiv 1{\text{ }}\left( {{\rm{mod}} 4} \right)$ , the corresponding value set is$\left\{ {0, 4, - 4} \right\}$ . The existing range of balanced optimal binary sequences with period of 4v is extended by this method, so that more optimal sequences with good property can be provided for engineering applications.-
Key words:
- Binary sequences /
- Almost difference set /
- Cyclotomy /
- Optimal autocorrelation property
-
表 1 定理2中理想二进制序列的自相关函数值分布
$j$ $V \in $ $R\left( {{\tau _1},{\tau _2}} \right)$ $\left( {{\tau _1},{\tau _2}} \right) \in $ 0 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 1,0} \right)} \right\},} \right.$$\left. {\left\{ {\left( {i + 1,0} \right),\left( {i + 2,0} \right)} \right\}} \right\}$ –4 $\left\{ 1 \right\} \times {D_0} \cup \left\{ 3 \right\} \times {D_1} \cup \left\{ 0 \right\} \times Z_v^* \cup \left\{ {\left( {2,0} \right)} \right\}$, 1 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 3,0} \right)} \right\},} \right.$$\left. {\left\{ {\left( {i + 2,0} \right),\left( {i + 3,0} \right)} \right\}} \right\}$ 0 $\left\{ 2 \right\} \times Z_v^* \cup \left\{ {\left( {1,0} \right),\left( {3,0} \right)} \right\}$, 4 $\left\{ 1 \right\} \times {D_1} \cup \left\{ 3 \right\} \times {D_0}$ 0 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 2,0} \right)} \right\},} \right.$$\left. {\left\{ {\left( {i + 1,0} \right),\left( {i + 3,0} \right)} \right\}} \right\}$ –4 $\left\{ 0 \right\} \times Z_v^* \cup \left\{ {\left( {1,0} \right),\left( {3,0} \right)} \right\}$, 0 $\left\{ {1,2,3} \right\} \times Z_v^*$, 1 4 $\left\{ {\left( {2,0} \right)} \right\}$ 0 $\left\{ {\left\{ {\left( {i + 3,0} \right),\left( {i + 2,0} \right)} \right\},} \right.$$\left. {\left\{ {\left( {i,0} \right),\left( {i + 3,0} \right)} \right\}} \right\}$ –4 $\left\{ 0 \right\} \times Z_v^* \cup \left\{ 1 \right\} \times {D_1} \cup \left\{ 3 \right\} \times {D_0} \cup \left\{ {\left( {2,0} \right)} \right\}$, 1 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 1,0} \right)} \right\},} \right.$$\left. {\left\{ {\left( {i + 1,0} \right),\left( {i + 2,0} \right)} \right\}} \right\}$ 0 $\left\{ 2 \right\} \times Z_v^* \cup \left\{ {\left( {3,0} \right),\left( {1,0} \right)} \right\}$, 4 $\left\{ 1 \right\} \times {D_0} \cup \left\{ 3 \right\} \times {D_1}$ 注:${0 \le i \le 3}$ 表 2 定理3中理想二进制序列的自相关函数值分布
$j$ $V \in $ $R\left( {{\tau _1},{\tau _2}} \right)$ $\left( {{\tau _1},{\tau _2}} \right) \in $ 0 $\left\{ {\left\{ {\left( {i + 1,0} \right)} \right\},\left\{ {\left( {i + 3,0} \right)} \right\}} \right\}$ –4 $\left\{ 0 \right\} \times Z_v^* \cup \left\{ {1,3} \right\} \times {D_1}$, 1 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 1,0} \right),\left( {i + 2,0} \right)} \right\},} \right.$ 0 $\left\{ 2 \right\} \times Z_v^* \cup \left\{ {\left( {1,0} \right),\left( {2,0} \right),\left( {3,0} \right)} \right\}$, $\left. {\left\{ {\left( {i,0} \right),\left( {i + 2,0} \right),\left( {i + 3,0} \right)} \right\}} \right\}$ 4 $\left\{ {1,3} \right\} \times {D_0}$ 0 $\left\{ {\left\{ {\left( {i,0} \right),\left( {i + 1,0} \right),\left( {i + 2,0} \right)} \right\},} \right.$ –4 $\left\{ 0 \right\} \times Z_v^* \cup \left\{ {1,3} \right\} \times {D_0}$, $\left. {\left\{ {\left( {i,0} \right),\left( {i + 2,0} \right),\left( {i + 3,0} \right)} \right\}} \right\}$ 0 $\left\{ 2 \right\} \times Z_v^* \cup \left\{ {\left( {1,0} \right),\left( {2,0} \right),\left( {3,0} \right)} \right\}$, 1 $\left\{ {\left\{ {\left( {i + 1,0} \right)} \right\},\left\{ {\left( {i + 3,0} \right)} \right\}} \right\}$ 4 $\left\{ {1,3} \right\} \times {D_1}$ 注:${0 \le i \le 3}$ 表 3 已知周期为
$T \equiv 0\;\left( {{\rm{mod 4}}} \right)$ 的具有理想自相关值/幅度的二进制序列总结周期 $T$ $R\left( {\tau \ne 0} \right)$ 平衡性 构造方法 $T = 4v$, $v \equiv 3(\bmod 4)$ $\left\{ {0, - 4} \right\}$ 几乎平衡 交织法[10] $T = 4v$, $v = {2^{2k}} - 1$ $\left\{ {0, \pm 4} \right\}$ 几乎平衡 交织法[11] $T = 4v$, $v = p\left( {p + 2} \right)$, $p$和$p + 2$为素数 $\left\{ {0, \pm 4} \right\}$ 不平衡 交织法[11] $T = 4v$, $v = {2^m} - 1$, $m$为整数 $\left\{ {0, \pm 4} \right\}$ 几乎平衡 交织法[12] $T = 4v$, $v \equiv 3(\bmod 4)$, $v$为整数 $\left\{ {0, - 4} \right\}$ 几乎平衡 中国剩余定理[16] $T = 4v$, $v \equiv 3(\bmod 4)$, $v$为素数 $\left\{ {0, - 4} \right\}$ 几乎平衡 分圆类[15] $T = {p^m} - 1$, $\dfrac{ { {p^m} - 1} }{2}$为偶数 $\left\{ {0, - 4} \right\}$ 平衡 基于多项式$z\left( {1 - z} \right)$[8] $T = {p^m} - 1$, $p$为奇素数 $\left\{ {0, - 4} \right\}$ 平衡或几乎平衡 基于多项式${\left( {z + 1} \right)^d} + a{z^d} + b$[9] $T = 4v$, $v \equiv 3(\bmod 4)$ $\left\{ {0, \pm 4} \right\}$ 几乎平衡或不平衡 一般化交织法[7] $T = 4v$, $v \equiv 2(\bmod 4)$ $\left\{ {0, \pm 4} \right\}$ 几乎平衡 交织法[13] $T = 4v$, $v \equiv 1(\bmod 4)$, $v$为素数 $\left\{ {0, \pm 4} \right\}$ 平衡或不平衡 交织法[14] $T = 4v$, $v \equiv 3(\bmod 4)$, $v$为素数 $\left\{ {0, - 4} \right\}$ 几乎平衡 广义分圆, 定理1 $T = 4v$, $v \equiv 3(\bmod 4)$, $v$为素数 $\left\{ {0, \pm 4} \right\}$ 平衡 广义分圆, 定理2 $T = 4v$, $v \equiv 1(\bmod 4)$, $v$为素数 $\left\{ {0, \pm 4} \right\}$ 几乎平衡 广义分圆, 定理3 -
[1] GOLOMB S W and GONG G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Rader[M]. Cambridge: Cambridge University Press, 2005: 105–110. [2] LUKE H D, SCHOTTEN H D, and HADINEJAD–MAHRAM H. Binary and quadriphase sequences with optimal autocorrelation properties: A survey[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3271–3282. doi: 10.1109/TIT.2003.820035 [3] 彭秀平, 冀惠璞, 郑德亮, 等. 周期为2q理想几乎四进制序列构造研究[J]. 通信学报, 2019, 40(12): 105–113. doi: 10.11959/j.issn.1000−436x.2019225PENG Xiuping, JI Huipu, ZHENG Deliang, et al. Study on the constructions of optimal almost quaternary sequences with period 2q[J]. Journal on Communications, 2019, 40(12): 105–113. doi: 10.11959/j.issn.1000−436x.2019225 [4] 刘涛, 许成谦, 李玉博. 一类相互正交的最佳二元零相关区序列集构造法[J]. 电子与信息学报, 2017, 39(10): 2442–2448. doi: 10.11999/JEIT161365LIU Tao, XU Chengqian, and LI Yubo. Construction of optimal mutually orthogonal sets of binary zero correlation zone sequences[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2442–2448. doi: 10.11999/JEIT161365 [5] 李玉博, 刘涛, 陈晓玉. 几乎最优二元多子集零相关区序列集构造法[J]. 电子与信息学报, 2018, 40(3): 705–712. doi: 10.11999/JEIT170603LI Yubo, LIU Tao, and CHEN Xiaoyu. Construction of almost optimal binary mutiple zero correlation zone sequence sets[J]. Journal of Electronics &Information Technology, 2018, 40(3): 705–712. doi: 10.11999/JEIT170603 [6] 李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844LI Yubo and CHEN Miao. Construction of nearly perfect gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844 [7] YAN Tongjiang, CHEN Zhixiong, and LI Bao. A general construction of binary interleaved sequences of period 4N with optimal autocorrelation[J]. Information Sciences, 2014, 287: 26–31. doi: 10.1016/j.ins.2014.07.026 [8] LEMPEL A, COHN M, and EASTMAN W. A class of balanced binary sequences with optimal autocorrelation properties[J]. IEEE Transactions on Information Theory, 1977, 23(1): 38–42. doi: 10.1109/TIT.1977.1055672 [9] NO J S, CHUNG H, SONG H Y, et al. New construction for binary sequences of period ${p^m} - 1$ with optimal autocorrelation using${\left({z + 1} \right)^d} + {z^d} + b$ [J]. IEEE Transactions on Information Theory, 2001, 47(4): 1638–1644. doi: 10.1109/18.923752[10] TANG Xiaohu and DING Cunsheng. New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6398–6405. doi: 10.1109/TIT.2010.2081170 [11] TANG Xiaohu and GONG Guang. New constructions of binary sequences with optimal autocorrelation value/magnitude[J]. IEEE Transactions on Information Theory, 2010, 56(3): 1278–1286. doi: 10.1109/TIT.2009.2039159 [12] NAM Y Y and GONG Guang. New binary sequences with optimal autocorrelation magnitude[J]. IEEE Transactions on Information Theory, 2008, 54(10): 4771–4779. doi: 10.1109/TIT.2008.928999 [13] KRENGEL E I and IVANOV P V. Two constructions of binary sequences with optimal autocorrelation magnitude[J]. Electronics Letters, 2016, 52(17): 1457–1459. doi: 10.1049/el.2016.2476 [14] SU Wei, YANG Yang, and FAN Cuiling. New optimal binary sequences with period 4p via interleaving Ding–Helleseth–Lam sequences[J]. Designs, Codes and Cryptography, 2018, 86(6): 1329–1338. doi: 10.1007/s10623-017-0398-5 [15] ZHANG Yuan, LEI Jianguo, and ZHANG Shaopu. A new family of almost difference sets and some necessary conditions[J]. IEEE Transactions on Information Theory, 2006, 52(5): 2052–2061. doi: 10.1109/TIT.2006.872969 [16] ARASU K T, DING C, HELLESETH T, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2934–2943. doi: 10.1109/18.959271 [17] DING C, PEI D, and SALOMAA A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptograph[M]. Singapore: World Scientific, 1996: 82–85.
表(3)
计量
- 文章访问数: 959
- HTML全文浏览量: 258
- PDF下载量: 45
- 被引次数: 0