高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代价敏感的序贯三支决策最优粒度选择方法

张清华 庞国弘 李新太 张雪秋

张清华, 庞国弘, 李新太, 张雪秋. 基于代价敏感的序贯三支决策最优粒度选择方法[J]. 电子与信息学报, 2021, 43(10): 3001-3009. doi: 10.11999/JEIT200821
引用本文: 张清华, 庞国弘, 李新太, 张雪秋. 基于代价敏感的序贯三支决策最优粒度选择方法[J]. 电子与信息学报, 2021, 43(10): 3001-3009. doi: 10.11999/JEIT200821
Qinghua ZHANG, Guohong PANG, Xintai LI, Xueqiu ZHANG. Optimal Granularity Selection Method Based on Cost-sensitive Sequential Three-way Decisions[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3001-3009. doi: 10.11999/JEIT200821
Citation: Qinghua ZHANG, Guohong PANG, Xintai LI, Xueqiu ZHANG. Optimal Granularity Selection Method Based on Cost-sensitive Sequential Three-way Decisions[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3001-3009. doi: 10.11999/JEIT200821

基于代价敏感的序贯三支决策最优粒度选择方法

doi: 10.11999/JEIT200821
基金项目: 国家重点研发计划(2020YFC2003502),国家自然科学基金(61876201)
详细信息
    作者简介:

    张清华:男,1974年生,教授,博士,博士生导师,研究方向为不确定信息处理、粗糙集与粒计算等

    庞国弘:男,1994年生,硕士生,研究方向为不确定信息处理、粗糙集与三支决策

    李新太:男,1995年生,硕士生,研究方向为不确定信息处理、数据挖掘与机器学习

    张雪秋:女,1993年生,硕士生,研究方向为不确定信息处理、粗糙集与多尺度

    通讯作者:

    张清华 zhangqh@cqupt.edu.cn

  • 中图分类号: TP301.6

Optimal Granularity Selection Method Based on Cost-sensitive Sequential Three-way Decisions

Funds: The National Key Research and Development Program of China (2020YFC2003502), The National Natural Science Foundation of China (61876201)
  • 摘要: 最优粒度选择是序贯三支决策领域研究的热点之一,旨在通过合理的粒度选择来对复杂问题进行求解。在现阶段最优粒度选择中,代价敏感是影响决策的重要因素之一。针对这个问题,该文首先基于信息增益和卡方检验提出一种新的属性重要度计算方法;其次,为了更好地符合实际应用场景,在构建多粒度空间时将代价参数与粒度大小相结合,设置了相应的惩罚规则,并分析了决策阈值的变化规律;最后,为了消除测试代价和决策代价量纲不一致所带来的影响,借助变异系数设计了一种客观的代价计算方法。实验结果表明,该模型适用于现有代价认知场景,能在给定代价情况下选出代价最小的最优粒层。
  • 图  1  多粒度空间的构造过程

    图  2  算法框架

    图  3  第1组代价参数下各数据集最优粒层的代价变化

    图  4  第2组代价参数下各数据集最优粒层的代价变化

    表  1  代价参数矩阵

    $X$${}^\neg X$
    ${a_P}$0$\lambda _{{\rm{PN}}}^k$
    ${a_B}$$\lambda _{{\rm{BP}}}^k$$\lambda _{{\rm{BN}}}^k$
    ${a_N}$$\lambda _{{\rm{NP}}}^k$0
    下载: 导出CSV

    表  2  数据集的描述

    序号数据集属性特征数目条件属性个数
    1Balance-scaleCategorical6254
    2Breast Cancer WisconsinInteger6999
    3Tic-Tac-Toe EndgameCategorical9589
    4Car EvaluationCategorical17286
    5NurseryCategorical129608
    6ChessCategorical, Integer280566
    下载: 导出CSV

    表  3  代价参数

    ${\lambda _{{\rm{PP}}}}$${\lambda _{{\rm{BP}}}}$${\lambda _{{\rm{NP}}}}$${\lambda _{{\rm{PN}}}}$${\lambda _{{\rm{BN}}}}$${\lambda _{{\rm{NN}}}}$
    第1组014520
    第2组026730
    下载: 导出CSV

    表  4  第1组代价参数下各个数据集最优粒层信息

    数据集最优粒层测试代价决策代价权重总代价
    Balance-scale3696.6118.0(0.46,0.54)0.4172
    Breast Cancer Wisconsin8323.7522.6(0.52,0.48)0.3684
    Tic-Tac-Toe Endgame6424.0314.3(0.49,0.51)0.4453
    Car Evaluation4636.035.2(0.52,0.48)0.4032
    Chess41997.30.0(0.50,0.50)0.4818
    Nursery6998.98677.1(0.54,0.46)0.5423
    下载: 导出CSV

    表  5  第2组代价参数下每个数据集最优粒层信息

    数据集最优粒层测试代价决策代价权重总代价
    Balance-scale3696.673.0(0.47,0.53)0.3172
    Breast Cancer Wisconsin5227.9652.1(0.48,0.52)0.4459
    Tic-Tac-Toe Endgame6424.0147.4(0.40,0.60)0.2941
    Car Evaluation4636.0372.1(0.42,0.58)0.3132
    Chess41997.314029.1(0.41,0.59)0.3705
    Nursery5731.317162.085(0.55,0.45)0.5522
    下载: 导出CSV

    表  6  最优粒层比较

    数据集模型最优粒层冗余属性最优属性子集
    Balance-scale模型13$\phi $$\{ {c_4},{c_3},{c_2}\} $
    模型23$\phi $$\{ {c_4},{c_3},{c_2}\} $
    Breast Cancer Wisconsin模型18$\{ {c_1}\} $$\{ {c_2},{c_3},{c_6},{c_7},{c_5},{c_8},{c_4},{c_9}\} $
    模型25$\{ {c_1}\} $$\{ {c_2},{c_3},{c_6},{c_7},{c_5}\} $
    Tic-Tac-Toe Endgame模型16$\phi $$\{ {c_8},{c_6},{c_4},{c_2},{c_9},{c_7}\} $
    模型26$\phi $$\{ {c_8},{c_6},{c_4},{c_2},{c_9},{c_7}\} $
    Car Evaluation模型13$\{ {c_2}\} $$\{ {c_4},{c_1},{c_6}\} $
    模型23$\{ {c_2}\} $$\{ {c_4},{c_1},{c_6}\} $
    Chess模型16$\phi $$\{ {c_3},{c_5},{c_2},{c_1},{c_4},{c_6}\} $
    模型25$\phi $$\{ {c_3},{c_5},{c_2},{c_1},{c_4}\} $
    Nursery模型16$\{ {c_3},{c_6}\} $$\{ {c_8},{c_2},{c_1},{c_7},{c_5},{c_4}\} $
    模型26$\{ {c_3},{c_6}\} $$\{ {c_8},{c_2},{c_1},{c_7},{c_5},{c_4}\} $
    下载: 导出CSV
  • [1] LIAO Shujiao, ZHU Qingxin, QIAN Yuhua, et al. Multi-granularity feature selection on cost-sensitive data with measurement errors and variable costs[J]. Knowledge-Based Systems, 2018, 158: 25–42. doi: 10.1016/j.knosys.2018.05.020
    [2] YANG Jie, WANG Guoyin, ZHANG Qinghua, et al. Optimal granularity selection based on cost-sensitive sequential three-way decisions with rough fuzzy sets[J]. Knowledge-Based Systems, 2019, 163: 131–144. doi: 10.1016/j.knosys.2018.08.019
    [3] LI Huaxiong, ZHANG Libo, ZHOU Xianzhong, et al. Cost-sensitive sequential three-way decision modeling using a deep neural network[J]. International Journal of Approximate Reasoning, 2017, 85: 68–78. doi: 10.1016/j.ijar.2017.03.008
    [4] ZHANG Yanping, ZOU Huijin, CHEN Xi, et al. Cost-sensitive three-way decisions model based on CCA[C]. The 9th International Conference on Rough Sets and Current Trends in Computing, Granada and Madrid, Spain, 2014: 172–180. doi: 10.1007/978-3-319-08644-6_18.
    [5] JIA Xiuyi, LIAO Wenhe, TANG Zhenmin, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219: 151–167. doi: 10.1016/j.ins.2012.07.010
    [6] YANG Xibei, QI Yunsong, SONG Xiaoning, et al. Test cost sensitive multigranulation rough set: Model and minimal cost selection[J]. Information Sciences, 2013, 250: 184–199. doi: 10.1016/j.ins.2013.06.057
    [7] MIN Fan and LIU Qihe. A hierarchical model for test-cost-sensitive decision systems[J]. Information Sciences, 2009, 179(14): 2442–2452. doi: 10.1016/j.ins.2009.03.007
    [8] JU Hengrong, LI Huaxiong, YANG Xibei, et al. Cost-sensitive rough set: A multi-granulation approach[J]. Knowledge-Based Systems, 2017, 123: 137–153. doi: 10.1016/j.knosys.2017.02.019
    [9] JU Hengrong, YANG Xibei, YU Hualong, et al. Cost-sensitive rough set approach[J]. Information Sciences, 2016, 355/356: 282–298. doi: 10.1016/j.ins.2016.01.103
    [10] YAO Yiyu and DENG Xiaofei. Sequential three-way decisions with probabilistic rough sets[C]. IEEE 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI-CC’11), Banff, Canada, 2011: 120–125. doi: 10.1109/COGINF.2011.6016129.
    [11] ZHANG Qinghua, CHEN Yuhong, YANG Jie, et al. Fuzzy entropy: A more comprehensible perspective for interval shadowed sets of fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(11): 3008–3022. doi: 10.1109/tfuzz.2019.2947224
    [12] ZHANG Qinghua, ZHAO Fan, YANG Jie, et al. Three-way decisions of rough vague sets from the perspective of fuzziness[J]. Information Sciences, 2020, 523: 111–132. doi: 10.1016/j.ins.2020.03.013
    [13] 张清华, 幸禹可, 周玉兰. 基于粒计算的增量式知识获取方法[J]. 电子与信息学报, 2011, 33(2): 435–441. doi: 10.3724/SP.J.1146.2010.00217

    ZHANG Qinghua, XING Yuke, and ZHOU Yulan. The incremental knowledge acquisition algorithm based on granular computing[J]. Journal of Electronics &Information Technology, 2011, 33(2): 435–441. doi: 10.3724/SP.J.1146.2010.00217
    [14] FANG Yu, GAO Cong, and YAO Yiyu. Granularity-driven sequential three-way decisions: A cost-sensitive approach to classification[J]. Information Sciences, 2020, 507: 644–664. doi: 10.1016/j.ins.2019.06.003
    [15] LI Huaxiong, ZHANG Libo, HUANG Bing, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-Based Systems, 2016, 91: 241–251. doi: 10.1016/j.knosys.2015.07.040
    [16] QIAN Jin, LIU Caihui, MIAO Duoqian, et al. Sequential three-way decisions via multi-granularity[J]. Information Sciences, 2020, 507: 606–629. doi: 10.1016/j.ins.2019.03.052
    [17] 陈泽华, 马贺. 基于粒矩阵的多输入多输出真值表快速并行约简算法[J]. 电子与信息学报, 2015, 37(5): 1260–1265. doi: 10.11999/JEIT141129

    CHEN Zehua and MA He. Granular matrix based rapid parallel reduction algorithm for MIMO truth table[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1260–1265. doi: 10.11999/JEIT141129
    [18] ZHANG Qinghua, XIA Deyou, and WANG Guoyin. Three-way decision model with two types of classification errors[J]. Information Sciences, 2017, 420: 431–453. doi: 10.1016/j.ins.2017.08.066
    [19] 王国胤. Rough集理论与知识获取[M]. 西安: 西安交通大学出版社, 2001: 17–18.
    [20] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341–356. doi: 10.1007/BF01001956
    [21] PLACKETT R L. Karl Pearson and the chi-squared test[J]. International Statistical Review, 1983, 51(1): 59–72. doi: 10.2307/1402731
    [22] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 75.
    [23] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81–106. doi: 10.1023/A:1022643204877
    [24] LIU Dun, LI Tianrui, and LIANG Decui. Three-way decisions in dynamic decision-theoretic rough sets[C]. The 8th International Conference on Rough Sets and Knowledge Technology, Halifax, Canada, 2013: 291–301. doi: 10.1007/978-3-642-41299-8_28.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  377
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2021-07-19
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回