[1] |
HAN Sarang, JI S, KANG I, et al. Millimeter wave beamforming receivers using A Si-based OBFN for 5G wireless communication systems[J]. Optics Communications, 2019, 430: 83–97. doi: 10.1016/j.optcom.2018.08.031
|
[2] |
刘兴隆, 杜彪, 周建寨. 一种新型椭圆波束天线设计技术[J]. 电子与信息学报, 2019, 41(12): 2911–2918. doi: 10.11999/JEIT190142LIU Xinglong, DU Biao, and ZHOU Jianzhai. A novel shaping design technique of the elliptical beam antenna[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2911–2918. doi: 10.11999/JEIT190142
|
[3] |
黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 电子与信息学报, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429HUANG Junsheng and SU Hongtao. Joint transmitting subarray partition and beamforming design method based on two-dimensional phased-MIMO radar[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429
|
[4] |
TUNA C, JONES D L, ZHAO Shengkui, et al. Wideband compressive beamforming tomography for drive-by large-scale acoustic source mapping[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3899–3911. doi: 10.1121/1.5042214
|
[5] |
MOZAFFARZADEH M, SADEGHI M, MAHLOOJIFAR A, et al. Double-stage delay multiply and sum beamforming algorithm applied to ultrasound medical imaging[J]. Ultrasound in Medicine & Biology, 2018, 44(3): 677–686.
|
[6] |
DOLPH C L. A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level[J]. Proceedings of the IRE, 1946, 34(6): 335–348. doi: 10.1109/JRPROC.1946.225956
|
[7] |
刘福来, 陈萍萍, 汪晋宽, 等. 基于多参数二次规划的零陷展宽和旁瓣控制方法[J]. 东北大学学报:自然科学版, 2012, 33(11): 1559–1562.LIU Fulai, CHEN Pingping, WANG Jinkuan, et al. Null broadening and sidelobe control method based on multiparametric quadratic programming[J]. Journal of Northeastern University:Natural Science, 2012, 33(11): 1559–1562.
|
[8] |
GUO Xijing, MIRON S, YANG Yixin, et al. Second-order cone programming with probabilistic regularization for robust adaptive beamforming[J]. The Journal of the Acoustical Society of America, 2017, 141(3): EL199. doi: 10.1121/1.4976846
|
[9] |
陆必应, 梁甸农. 柔性稀疏阵的稳健波束形成[J]. 信号处理, 2007, 23(2): 169–173.LU Biying and LIANG Diannong. A robust beamforming approach with applications to flexible sparse arrays[J]. Signal Processing, 2007, 23(2): 169–173.
|
[10] |
臧守明, 白媛, 马秀荣, 等. 一种改进的嵌套阵列波束形成算法[J]. 计算机仿真, 2016, 33(10): 221–225,380.ZANG Shouming, BAI Yuan, MA Xiurong, et al. Improved beamforming algorithm in nested array[J]. Computer Simulation, 2016, 33(10): 221–225,380.
|
[11] |
XU Haisheng, BLUM R S, WANG Jian, et al. Colocated MIMO radar waveform design for transmit beampattern formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1558–1568. doi: 10.1109/taes.2014.140249
|
[12] |
李文兴, 毛晓军, 翟助群. 抗导向矢量失配的零陷展宽波束形成算法[J]. 哈尔滨工业大学学报, 2016, 48(11): 116–122.LI Wenxing, MAO Xiaojun, and ZHAI Zhuqun. Null broadening beamforming against steering vector mismatch[J]. Journal of Harbin Institute of Technology, 2016, 48(11): 116–122.
|
[13] |
ABBASI-JANNATABAD M and KHOSHBIN H. Cooperative beamforming and relay selection in cognitive radio systems[J]. International Journal of Communication Systems, 2016, 29(2): 330–340. doi: 10.1002/dac.2834
|
[14] |
HU Bin, WU Xiaochuan, ZHANG Xin, et al. Adaptive beamforming for sparse array based on semi-definite programming[J]. IEEE Access, 2018, 6: 64525–64532. doi: 10.1109/access.2018.2878153
|
[15] |
鄢社锋, 马远良, 孙超. 任意几何形状和阵元指向性的传感器阵列优化波束形成方法[J]. 声学学报, 2005, 30(3): 264–270.YAN Shefeng, MA Yuanliang, and SUN Chao. Beampattern optimization for sensor arrays of arbitrary geometry and element directivity[J]. Acta Acustica, 2005, 30(3): 264–270.
|
[16] |
马远良. 任意结构形状传感器阵方向图的最佳化[J]. 中国造船, 1984(4): 80–87.MA Yuanliang. Pattern optimisation for sensor arrays of arbitrary geometry[J]. Shipbuilding of China, 1984(4): 80–87.
|
[17] |
OLEN C A and COMPTON R T. A numerical pattern synthesis algorithm for arrays[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(10): 1666–1676. doi: 10.1109/8.59781
|
[18] |
ZHOU P Y, INGRAM M A, and ANDERSON P D. Synthesis of minimax sidelobes for arbitrary arrays[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(11): 1759–1760. doi: 10.1109/8.736644
|
[19] |
WU Renbiao, BAO Zheng, and MA Yuanliang. Control of peak sidelobe level in adaptive arrays[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(10): 1341–1347. doi: 10.1109/8.537328
|
[20] |
钱鹏, 陆金桂, 朱正权. 基于径向基神经网络的液压支架前连杆可靠性评估研究[J]. 矿业研究与开发, 2019, 39(1): 110–113.QIAN Peng, LU Jingui, and ZHU Zhengquan. Reliability evaluation of front connecting rod of hydraulic support based on RBF neural network[J]. Mining Research and Development, 2019, 39(1): 110–113.
|
[21] |
ZHANG Liwei, LIU Xiaotian, and ZHANG Jingbiao. Regulation capability evaluation of individual electric heating load based on radial basis function neural network[J]. Thermal Science, 2019, 23(5A): 2821–2829. doi: 10.2298/tsci190104196z
|
[22] |
LIN Hongjun, DAI Qunyun, ZHENG Lili, et al. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study[J]. Chemosphere, 2020, 248: 125999. doi: 10.1016/j.chemosphere.2020.125999
|
[23] |
PANDEESWARI B, SUTHA J, and PARVATHY M. A novel synthetic aperture radar image change detection system using radial basis function-based deep convolutional neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(1): 897–910. doi: 10.1007/s12652-020-02091-y
|
[24] |
CHAO Zhen and KIM H J. Removal of computed tomography ring artifacts via radial basis function artificial neural networks[J]. Physics in Medicine & Biology, 2019, 64(23): 235015. doi: 10.1088/1361-6560/ab5035
|
[25] |
HUANG Chao, WANG Xiangyu, LI Liang, et al. Multistructure radial basis function neural-networks-based extended model predictive control: Application to clutch control[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2519–2530. doi: 10.1109/tmech.2019.2949001
|
[26] |
李艳东, 朱玲, 郭媛, 等. 基于径向基函数神经网络的移动机器人多变量固定时间编队控制[J]. 信息与控制, 2019, 48(6): 649–657.LI Yandong, ZHU Ling, GUO Yuan, et al. Radial basis function neural network-based multivariable fixed-time formation control of mobile robots[J]. Information and Control, 2019, 48(6): 649–657.
|
[27] |
KUMAR R, AGRAWAL H P, SHAH A, et al. Maximum power point tracking in wind energy conversion system using radial basis function based neural network control strategy[J]. Sustainable Energy Technologies and Assessments, 2019, 36: 100533. doi: 10.1016/j.seta.2019.100533
|
[28] |
冯晓宇, 谢军伟, 张晶, 等. 低快拍下模糊径向基神经网络波束形成算法[J]. 火力与指挥控制, 2018, 43(4): 132–135,140.FENG Xiaoyu, XIE Junwei, ZHANG Jing, et al. Beamforming algorithm based on fuzzy RBF neural network in the situation of limited snapshots[J]. Fire Control &Command Control, 2018, 43(4): 132–135,140.
|
[29] |
ENRICONI M P, DE CASTRO F C C, MÜLLER C, et al. Phase transmittance RBF neural network beamforming for static and dynamic channels[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(2): 243–247. doi: 10.1109/lawp.2019.2958682
|
[30] |
MAYER K S, SOARES J A, and ARANTES D S. Complex MIMO RBF neural networks for transmitter beamforming over nonlinear channels[J]. Sensors, 2020, 20(2): 378. doi: 10.3390/s20020378
|