高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法

雷大江 杜加浩 张莉萍 李伟生

雷大江, 杜加浩, 张莉萍, 李伟生. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237-244. doi: 10.11999/JEIT200792
引用本文: 雷大江, 杜加浩, 张莉萍, 李伟生. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237-244. doi: 10.11999/JEIT200792
LEI Dajiang, DU Jiahao, ZHANG Liping, LI Weisheng. Multi-stream Architecture and Multi-scale Convolutional Neural Network for Remote Sensing Image Fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237-244. doi: 10.11999/JEIT200792
Citation: LEI Dajiang, DU Jiahao, ZHANG Liping, LI Weisheng. Multi-stream Architecture and Multi-scale Convolutional Neural Network for Remote Sensing Image Fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237-244. doi: 10.11999/JEIT200792

联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法

doi: 10.11999/JEIT200792
基金项目: 国家自然科学基金(61972060, 61802148, U1401252),重庆市杰出青年基金(cstc2014jcyjjq40001),重庆市海外留学人员创新创业基金(cx2018120)
详细信息
    作者简介:

    雷大江:男,1979年生,副教授,研究方向为机器学习

    杜加浩:男,1996年生,硕士生,研究方向为遥感图像处理

    张莉萍:女,1983年生,博士生,研究方向为机器学习、遥感图像处理

    李伟生:男,1975年生,教授,研究方向为智能信息处理、模式识别与信息融合

    通讯作者:

    雷大江 leidj@cqupt.edu.cn

  • 中图分类号: TN911.73; TP751

Multi-stream Architecture and Multi-scale Convolutional Neural Network for Remote Sensing Image Fusion

Funds: The National Natural Science Foundation of China (61972060, 61802148, U1401252), The Chongqing Outstanding Youth Fund (cstc2014jcyjjq40001), The Innovation Support Program for Chongqing Overseas Returnees (cx2018120)
  • 摘要: 为尽可能保持原始低分辨率多光谱(LRMS)图像光谱信息的同时,显著提高融合后的多光谱图像的空间分辨率,该文提出一种联合多流融合和多尺度学习的卷积神经网络遥感图融合方法。首先将原始MS图像输入频谱特征提取子网得到其光谱特征,然后分别将通过梯度算子处理全色图像得到的梯度信息和通过卷积后的全色图像与得到的光谱特征图在通道上拼接输入到具有多流融合架构的金字塔模块进行图像重构。金字塔模块由多个骨干网络组成,可以在不同的空间感受野下进行特征提取,能够多尺度学习图像信息。最后,构建空间光谱预测子网融合金字塔模块输出的高级特征和网络前端的低级特征得到具有高空间分辨率的MS图像。结合WorldView-3卫星获取的图像进行实验,结果表明,所提方法生成的融合图像在主观目视检验和客观评价指标上都优于大多先进的遥感图像融合方法。
  • 图  1  联合多流融合和多尺度学习的卷积神经网络遥感图像融合框架

    图  2  频谱特征提取子网

    图  3  构成金字塔模块的骨干网络

    图  4  基于WorldView-3卫星数据集的仿真实验融合结果

    图  5  图4中各方法与真实图像对比的残差图

    图  6  基于WorldView-3卫星数据集的真实数据实验融合结果

    图  7  基于WorldView-3卫星数据集的真实数据实验融合结果关键局部区域

    表  1  基于WorldView-3卫星的仿真实验融合结果评价

    融合方法SAMERGAS$ {Q}_{8} $SCC
    BDSD8.09487.51790.50550.6817
    GLP-CBD6.82157.41790.65120.6580
    PNN5.38115.13570.82310.8602
    PanNet5.21775.00170.81290.8571
    PSGAN4.87444.36000.86680.9089
    MDDL5.12384.78120.82230.8684
    本文算法4.76764.33510.86770.9092
    参考值0011
    下载: 导出CSV

    表  2  基于WorldView-3卫星的真实数据实验融合结果评价

    融合方法$ {D}_{\lambda } $$ {D}_{s} $QNR
    BDSD0.01550.10600.8800
    GLP-CBD0.03790.08490.8805
    PNN0.02230.04830.9305
    PanNet0.00870.06480.9270
    PSGAN0.01520.04360.9419
    MDDL0.0098005890.9318
    本文算法0.01750.02930.9537
    参考值001
    下载: 导出CSV

    表  3  基于WorldView-3卫星仿真数据集的消融实验融合结果评价

    融合方法SAMERGAS$ {{Q}}_{8} $SCC
    缺少空间光谱预测子网的本文算法4.75984.56920.85630.8974
    缺少频谱特征提取子网的本文算法4.81914.38180.86510.9073
    缺少金字塔模块的本文算法4.86024.43880.86140.9049
    上采样LRMS输入的本文算法4.79404.34340.86610.9091
    本文算法4.76764.33510.86770.9092
    参考值0011
    下载: 导出CSV
  • [1] THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301–1312. doi: 10.1109/TGRS.2007.912448
    [2] CHOI M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J]. IEEE Transactions on Geoscience and Remote sensing, 2006, 44(6): 1672–1682. doi: 10.1109/TGRS.2006.869923
    [3] 纪峰, 李泽仁, 常霞, 等. 基于PCA和NSCT变换的遥感图像融合方法[J]. 图学学报, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247

    JI Feng, LI Zeren, CHANG Xia, et al. Remote sensing image fusion method based on PCA and NSCT transform[J]. Journal of Graphics, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
    [4] 刘静, 李小超, 祝开建, 等. 基于分布式压缩感知的遥感图像融合算法[J]. 电子与信息学报, 2017, 39(10): 2374–2381. doi: 10.11999/JEIT161393

    LIU Jing, LI Xiaochao, ZHU Kaijian, et al. Distributed compressed sensing based remote sensing image fusion algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2374–2381. doi: 10.11999/JEIT161393
    [5] GARZELLI A, NENCINI F, and CAPOBIANCO L. Optimal MMSE Pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 228–236. doi: 10.1109/TGRS.2007.907604
    [6] 贺康建, 金鑫, 聂仁灿, 等. 基于简化脉冲耦合神经网络与拉普拉斯金字塔分解的彩色图像融合[J]. 计算机应用, 2016, 36(S1): 133–137.

    HE Kangjian, JIN Xin, NIE Rencan, et al. Color image fusion based on simplified PCNN and Laplace pyramid decomposition[J]. Journal of Computer Applications, 2016, 36(S1): 133–137.
    [7] AIAZZI B, ALPARONE L, BARONTI S, et al. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2300–2312. doi: 10.1109/TGRS.2002.803623
    [8] WANG Xianghai, SHEN Yutong, ZHOU Zhiguang, et al. An image fusion algorithm based on lifting wavelet transform[J]. Journal of Optics, 2015, 17(5): 055702. doi: 10.1088/2040-8978/17/5/055702
    [9] ZHOU J, CIVCO D L, and SILANDER J A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J]. International Journal of Remote Sensing, 1998, 19(4): 743–757. doi: 10.1080/014311698215973
    [10] AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591–596. doi: 10.14358/PERS.72.5.591
    [11] CHEN Chen, LI Yeping, LIU Wei, et al. Image fusion with local spectral consistency and dynamic gradient sparsity[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2760–2765.
    [12] LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. doi: 10.1016/j.inffus.2017.10.007
    [13] YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: A deep network architecture for pan-sharpening[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1753–1761.
    [14] SCARPA G, VITALE S, COZZOLINO D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5443–5457. doi: 10.1109/TGRS.2018.2817393
    [15] XIANG Zhikang, XIAO Liang, LIU Pengfei, et al. A multi-scale densely deep learning method for pansharpening[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2786–2789.
    [16] LIU Xiangyu, WANG Yunhong, and LIU Qingjie. Psgan: A generative adversarial network for remote sensing image Pan-sharpening[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 873–877. doi: 10.1109/ICIP.2018.8451049.
    [17] 雷大江, 张策, 李智星, 等. 基于多流融合生成对抗网络的遥感图像融合方法[J]. 电子与信息学报, 2020, 42(8): 1942–1949. doi: 10.11999/JEIT190273

    LEI Dajiang, ZHANG Ce, LI Zhixing, et al. Remote sensing image fusion based on generative adversarial network with multi-stream fusion architecture[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1942–1949. doi: 10.11999/JEIT190273
    [18] RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645.
    [20] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708.
    [21] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    [22] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2472–2481. doi: 10.1109/CVPR.2018.00262.
    [23] WALD L, RANCHIN T, and MANGOLINI M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691–699.
    [24] VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734
    [25] WALD L. Data Fusion: Definitions and Architectures—Fusion of Images of Different Spatial Resolutions[M]. Pairs, France: Les Presses de l’ Écoledes Mines, 2002: 165–189.
    [26] GARZELLI A and NENCINI F. Hypercomplex quality assessment of multi/hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 662–665. doi: 10.1109/LGRS.2009.2022650
    [27] 张新曼, 韩九强. 基于视觉特性的多尺度对比度塔图像融合及性能评价[J]. 西安交通大学学报, 2004, 38(4): 380–383. doi: 10.3321/j.issn:0253-987X.2004.04.013

    ZHANG Xinman and HAN Jiuqiang. Image fusion of multiscale contrast pyramid-Based vision feature and its performance evaluation[J]. Journal of Xian Jiaotong University, 2004, 38(4): 380–383. doi: 10.3321/j.issn:0253-987X.2004.04.013
    [28] ALPARONE L, AIAZZI B, BARONTI S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(2): 193–200. doi: 10.14358/PERS.74.2.193
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1324
  • HTML全文浏览量:  682
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2021-04-11
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回