高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载SAR斜视模式运动目标方位多通道信号重建方法

徐伟 魏正彬 黄平平 谭维贤 乞耀龙 高志奇

徐伟, 魏正彬, 黄平平, 谭维贤, 乞耀龙, 高志奇. 星载SAR斜视模式运动目标方位多通道信号重建方法[J]. 电子与信息学报, 2021, 43(8): 2276-2285. doi: 10.11999/JEIT200785
引用本文: 徐伟, 魏正彬, 黄平平, 谭维贤, 乞耀龙, 高志奇. 星载SAR斜视模式运动目标方位多通道信号重建方法[J]. 电子与信息学报, 2021, 43(8): 2276-2285. doi: 10.11999/JEIT200785
Wei XU, Zhengbin WEI, Pingping HUANG, Weixian TAN, Yaolong QI, Zhiqi GAO. Azimuth Multichannel Reconstruction for Moving Targets in Spaceborne Squinted Multichannel Synthetic Aperture Radar[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2276-2285. doi: 10.11999/JEIT200785
Citation: Wei XU, Zhengbin WEI, Pingping HUANG, Weixian TAN, Yaolong QI, Zhiqi GAO. Azimuth Multichannel Reconstruction for Moving Targets in Spaceborne Squinted Multichannel Synthetic Aperture Radar[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2276-2285. doi: 10.11999/JEIT200785

星载SAR斜视模式运动目标方位多通道信号重建方法

doi: 10.11999/JEIT200785
基金项目: 国家自然科学基金(62071258, 61701264, 61631011),内蒙古自治区自然科学基金(2020ZD18),国防科技重点实验室基金(6142216190209)
详细信息
    作者简介:

    徐伟:男,1983年生,教授,研究方向为新体制SAR系统设计和信号处理

    魏正彬:男,1996年生,硕士生,研究方向为多通道SAR运动目标成像

    黄平平:男,1978年生,教授,研究方向为信号处理和数字波束形成

    谭维贤:男,1981年生,教授,研究方向为3D SAR成像及信号处理

    乞耀龙:男,1984年生,教授,研究方向为地基合成孔径雷达系统和阵列雷达成像

    高志奇:男,1980年生,副教授,研究方向为空时自适应处理

    通讯作者:

    魏正彬 wzbccn@163.com

  • 中图分类号: TN958

Azimuth Multichannel Reconstruction for Moving Targets in Spaceborne Squinted Multichannel Synthetic Aperture Radar

Funds: The National Natural Science Foundation of China (62071258, 61701264, 61631011), The Natural Science Foundation of Inner Mongolia Autonomous Region (2020ZD18), The National Defense Key Laboratory Foundation of China (6142216190209)
  • 摘要: 在星载方位多通道SAR斜视模式下,方位斜视角度和运动目标的速度分别导致回波多普勒频谱发生2次混叠和通道失衡,影响运动目标方位多通道信号重建。针对该问题,该文提出一种适用于多通道斜视模式下的运动目标的重建方法。首先通过方位向去斜预处理消除了斜视导致的2次多普勒混叠,然后通过修正的多通道重建矩阵来解决目标速度导致的通道失衡。此外,该文还研究了通道冗余情况下的杂波抑制能力,分析了估计速度误差带来的残余相位误差,给出了一种星载方位多通道SAR斜视模式下的运动目标速度快速估计搜索方法。最后,通过点目标仿真验证了方法的有效性。
  • 图  1  方位多通道斜视运动目标成像几何模型

    图  2  信号的2维频谱图

    图  3  目标速度对相位偏移的影响

    图  4  斜距向速度对不同通道的影响

    图  5  斜视模式下运动目标成像方法

    图  6  斜视模式下多通道重建流程图

    图  7  估计速度误差造成的最大残存相位误差

    图  8  一种运动目标速度快速估计搜索方法

    图  9  航迹向速度为10 m/s的目标多通道重建结果

    图  10  斜距向速度为10 m/s的目标多通道重建结果

    图  11  多个点目标的成像结果

    图  12  虚假目标幅度

    表  1  仿真参数

    参数
    载频5.6 GHz
    子孔径长度4 m
    子孔径数目3
    斜视角度20°
    系统PRF1400 Hz
    发射脉冲宽度4 μs
    发射脉冲带宽100 MHz
    采样频率120 MHz
    卫星速度7200 m/s
    最短斜距600 km
    下载: 导出CSV

    表  2  性能指标

    方法点目标航迹向斜距向
    Res(m)PSLR(dB)ISLR(dB)MFTA(dB)Res(m)PSLR(dB)ISLR(dB)
    传统P12.83–13.22–9.77–63.591.42–12.97–9.40
    P22.99–15.17–3.55–24.291.72–11.74–5.94
    P39.54–18.61–5.95–22.124.57–13.41–5.56
    改进P12.83–13.22–9.77–63.591.42–12.97–9.40
    P22.81–13.25–9.69–61.151.41–12.79–9.37
    P32.82–13.24–9.69–62.081.43–13.02–9.49
    下载: 导出CSV
  • [1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 2–4.
    [2] LUO Yin, ZHAO Fengjun, LI Ning, et al. A modified cartesian factorized back-projection algorithm for highly squint spotlight synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 902–906. doi: 10.1109/LGRS.2018.2885196
    [3] LIU Wenkang, SUN Guangcai, XIA Xianggen, et al. Highly squinted MEO SAR focusing based on extended omega-k algorithm and modified joint time and doppler resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9188–9200. doi: 10.1109/TGRS.2019.2925385
    [4] XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/TGRS.2013.2281454
    [5] XU Wei, DENG Yunkai, HUANG Pingping, et al. Full-aperture SAR data focusing in the spaceborne squinted sliding-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4596–4607. doi: 10.1109/TGRS.2013.2282863
    [6] 孙宁霄, 吴琼之, 孙林. 基于局部最优匹配的斜视SAR子孔径成像算法[J]. 电子与信息学报, 2017, 39(12): 2851–2859. doi: 10.11999/JEIT170466

    SUN Ningxiao, WU Qiongzhi, and SUN Lin. Local optimal matching algorithm for subaperture imaging of squint synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2851–2859. doi: 10.11999/JEIT170466
    [7] HUANG Pingping, LI Shenyang, and XU Wei. Investigation on full-aperture multichannel azimuth data processing in TOPS[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 728–732. doi: 10.1109/LGRS.2013.2278183
    [8] 赵庆超, 张毅, 王宇, 等. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408–419. doi: 10.12000/JR17035

    ZHAO Qingchao, ZHANG Yi, WANG Yu, et al. Signal reconstruction approach for multichannel SAR in azimuth based on multiframe super resolution[J]. Journal of Radars, 2017, 6(4): 408–419. doi: 10.12000/JR17035
    [9] HUANG Pingping, XU Wei, and LI Shenyang. Spaceborne squinted multichannel synthetic aperture radar data focusing[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1073–1080. doi: 10.1049/iet-rsn.2013.0332
    [10] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. A robust imaging algorithm for squint mode multi-channel high-resolution and wide-swath SAR with hybrid baseline and fluctuant terrain[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1583–1598. doi: 10.1109/JSTSP.2015.2464182
    [11] XU Wei, WEI Zhengbin, HUANG Pingping, et al. Azimuth multichannel reconstruction for moving targets in geosynchronous spaceborne–airborne bistatic SAR[J]. Remote Sensing, 2020, 12(11): 1703. doi: 10.3390/rs12111703
    [12] 王玉莹, 张志敏, 李宁, 等. 高分宽幅SAR系统下的方位多通道运动目标成像算法研究[J]. 电子与信息学报, 2020, 42(3): 541–546. doi: 10.11999/JEIT190211

    WANG Yuying, ZHANG Zhimin, LI Ning, et al. A moving target imaging approach for the multichannel in azimuth high resolution wide swath SAR system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 541–546. doi: 10.11999/JEIT190211
    [13] TAN Weixian, XU Wei, HUANG Pingping, et al. Investigation of azimuth multichannel reconstruction for moving targets in high resolution wide swath SAR[J]. Sensors, 2017, 17(6): 1270. doi: 10.3390/s17061270
    [14] ZHANG Ying, XIONG Wei, DONG Xichao, et al. A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne–airborne bistatic multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5976–5991. doi: 10.1109/TGRS.2020.2974531
    [15] 郜参观, 邓云凯, 冯锦. 通道不平衡对偏置相位中心多波束SAR性能影响的理论分析[J]. 电子与信息学报, 2011, 33(8): 1828–1832. doi: 10.3724/SP.J.1146.2010.01257

    GAO Canguan, DENG Yunkai, and FENG Jin. Theoretical analysis on the mismatch influence of displaced phase center multiple-beam SAR systems[J]. Journal of Electronics &Information Technology, 2011, 33(8): 1828–1832. doi: 10.3724/SP.J.1146.2010.01257
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1232
  • HTML全文浏览量:  445
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 修回日期:  2021-01-21
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回