高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析

张永胜 计一飞 董臻

张永胜, 计一飞, 董臻. 时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析[J]. 电子与信息学报, 2021, 43(10): 2781-2789. doi: 10.11999/JEIT200777
引用本文: 张永胜, 计一飞, 董臻. 时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析[J]. 电子与信息学报, 2021, 43(10): 2781-2789. doi: 10.11999/JEIT200777
Yongsheng ZHANG, Yifei JI, Zhen DONG. Research on Background Ionospheric Impacts Imposed by Spatio-temporal Variations on Spaceborne Synthetic Aperture Radar Azimuth Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2781-2789. doi: 10.11999/JEIT200777
Citation: Yongsheng ZHANG, Yifei JI, Zhen DONG. Research on Background Ionospheric Impacts Imposed by Spatio-temporal Variations on Spaceborne Synthetic Aperture Radar Azimuth Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2781-2789. doi: 10.11999/JEIT200777

时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析

doi: 10.11999/JEIT200777
基金项目: 国家自然科学基金(61501477)
详细信息
    作者简介:

    张永胜:男,1977年生,正高级工程师,研究方向为SAR系统设计以及SAR信号处理等

    计一飞:男,1992年生,讲师,研究方向为SAR信号处理以及电离层传播效应等

    董臻:男,1973年生,研究员,研究方向SAR系统设计和处理、地面动目标监测和数字波束形成等

    通讯作者:

    计一飞 jyfnudt@163.com

  • 中图分类号: TN957

Research on Background Ionospheric Impacts Imposed by Spatio-temporal Variations on Spaceborne Synthetic Aperture Radar Azimuth Imaging

Funds: The National Natural Science Foundation of China(61501477)
  • 摘要: 对于星载合成孔径雷达(SAR)成像,方位向信号的相关性可能会因时-空变化的背景电离层而遭到破坏,特别是对于低波段系统。该文将孔径内方位时变的斜距电子总量(STEC)归结于3个因素:垂向电子总量(VTEC)的时间变化、空间变化以及电磁波传播路径的变化,分别分析了每个因素造成的时变STEC各阶系数。该文建立了统一的分析模型,即时变STEC影响下的SAR方位向信号3阶泰勒展开模型,推导了方位向偏移和相位误差解析表达式,并基于此得到了不同星载SAR系统的时变STEC各阶系数容限。利用实测的VTEC数据以及国际参考电离层(IRI)模型,开展了信号级仿真。数值分析和信号级仿真的结果表明,对于低轨P波段SAR系统,空变VTEC与传播路径变化是导致方位时变STEC的主要因素;而对于中高轨SAR系统,时变VTEC是导致方位时变STEC的主要因素。随着载频的下降与合成孔径时间的增加,方位向成像性能更加容易受到方位时变STEC的影响。
  • 图  1  实测 VTEC 数据各阶分量的拟合结果

    图  2  IRI给出的局部区域 VTEC2 维分布(单位:TECU)

    图  3  传播路径变化引入的时变STEC 2阶分量系数

    图  4  合成孔径时间的计算

    图  5  时变STEC各阶分量系数的容限曲线

    图  6  时变STEC各阶分量系数的容限曲线

    表  1  不同星载SAR系统对应的时变STEC各阶系数容限

    P-SAR1P-SAR2PALSAR-2MEO SARGEO SAR1GEO SAR2
    中心频率 (GHz)0.500.501.271.251.251.25
    方位分辨率 (m)4.961.98≈1.002.106.302.10
    轨道高度 (km)70070063670003579335793
    合成孔径时间 (s)5.6514.11≈10.0075.00200.00600.00
    $\left| {{k_1}} \right|$容限(TECU/s)2.9×10–21.2×10–24.2×10–25.6×10–32.1×10–37.0×10–4
    $\left| {{k_2}} \right|$容限(TECU/s2)3.0×10–34.7×10–42.3×10–34.2×10–55.9×10–66.6×10–7
    $\left| {{k_3}} \right|$容限(TECU/s3)1.3×10–48.3×10–65.9×10–51.4×10–77.4×10–92.7×10–10
    下载: 导出CSV

    表  2  仿真中各因素导致的时变STEC各阶系数值

    LEO SAR${k'_1}$(TECU/s)${k'_2}$(TECU/s2)${k'_3}$(TECU/s3)${k''_1}$(TECU/s)${k''_2}$(TECU/s2)
    6.2×10–3–2.8×10–6–1.3×10–93.3×10–22.1×10–3
    ${\rm{VTE}}{{\rm{C}}_0}$${\rm{STE}}{{\rm{C}}_0}$${k_1}$(TECU/s)${k_2}$(TECU/s2)${k_3}$(TECU/s3)
    42.949.13.9×10–22.1×10–32.6×10–7
    MEO SAR${k'_1}$(TECU/s)${k'_2}$(TECU/s2)${k'_3}$(TECU/s3)${k''_1}$(TECU/s)${k''_2}$(TECU/s2)
    6.2×10–3–2.7×10–6–1.3×10–92.2×10–31.1×10–5
    ${\rm{VTE}}{{\rm{C}}_0}$${\rm{STE}}{{\rm{C}}_0}$${k_1}$(TECU/s)${k_2}$(TECU/s2)${k_3}$(TECU/s3)
    42.949.18.4×10–38.5×10–61.6×10–11
    GEO SAR${k'_1}$(TECU/s)${k'_2}$(TECU/s2)${k'_3}$(TECU/s3)${k''_1}$(TECU/s)${k''_2}$(TECU/s2)
    6.2×10–3–2.6×10–6–1.3×10–92.6×10–41.7×10–7
    ${\rm{VTE}}{{\rm{C}}_0}$${\rm{STE}}{{\rm{C}}_0}$${k_1}$(TECU/s)${k_2}$(TECU/s2)${k_3}$(TECU/s3)
    42.949.16.5×10–3–2.4×10–6–1.2×10–9
    下载: 导出CSV

    表  3  不同星载SAR系统对应的时变STEC各阶系数容限

    分辨率 (m)展宽系数PSLR (dB)ISLR (dB)峰值功率损失 (dB)偏移 (m)
    P-SAR14.991.01–12.58–9.040.136.67
    P-SAR26.813.44–6.13–7.155.346.64
    PALSAR-21.011.02–11.73–8.310.301.04
    MEO SAR2.101.00–13.20–9.620.013.21
    GEO SAR16.301.02–13.01–9.520.0319.82
    GEO SAR22.201.05–7.59–5.591.0319.65
    下载: 导出CSV
  • [1] CUMMING I, WONG F H, 洪文, 胡东辉, 译. 合成孔径雷达成像: 算法与实现[M]. 北京: 电子工业出版社, 2005: 2–11.

    CUMMING I, WONG F, HONG Wen, HU Donghui, translation. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2005: 2–11.
    [2] TOAN T L, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 403–411. doi: 10.1109/36.134089
    [3] CARREIRAS J M B, QUEGAN S, TOAN T L, et al. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions[J]. Remote Sensing of Environment, 2017, 196: 154–162. doi: 10.1016/j.rse.2017.05.003
    [4] SHIMADA M, ITOH T, MOTOOKA T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010)[J]. Remote Sensing of Environment, 2014, 155: 13–31. doi: 10.1016/j.rse.2014.04.014
    [5] 梁甸农, 周智敏, 常文革. 叶簇穿透超宽带成像雷达技术发展动态[J]. 国防科技参考, 1999, 20(3): 1–6.

    LIANG Diannong, ZHOU Zhimin, and CHANG Wenge. Technological development trend of the foliage-penetrating ultra-wideband imaging radar[J]. Reference of National Defense Technology, 1999, 20(3): 1–6.
    [6] 杨淋, 赵宁, 姚佰栋, 等. 高分辨率星载P波段SAR系统参数设计[J]. 雷达科学与技术, 2017, 15(1): 19–28.

    YANG Lin, ZHAO Ning, YAO Baidong, et al. Parameter design of a high resolution space-borne P-band SAR system[J]. Radar Science and Technology, 2017, 15(1): 19–28.
    [7] WANG Cheng, CHEN Liang, and LIU Lu. A new analytical model to study the ionospheric effects on VHF/UHF wideband SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4545–4557. doi: 10.1109/TGRS.2017.2693396
    [8] TOMIYASU K and PACELLI J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3): 324–329.
    [9] 李德鑫. 地球同步轨道合成孔径雷达信号处理与仿真技术研究[D]. [博士论文], 国防科技大学, 2017.

    LI Dexin. Research on the technology of signal processing and simulation of geosynchronous SAR[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
    [10] LONG Teng, HU Cheng, DING Zegang, et al. Geosynchronous SAR: System and Signal Processing[M]. Springer Nature Singapore Pte Ltd, 2018: 129–186.
    [11] MEYER F, BAMLER R, JAKOWSKI N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 560–564. doi: 10.1109/LGRS.2006.882148
    [12] JI Yifei, ZHANG Qilei, ZHANG Yongsheng, et al. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities[J]. Science China Information Science, 2017, 60(6): 060308. doi: 10.1007/s11432-016-9064-1
    [13] JI Yifei, ZHANG Yongsheng, DONG Zhen, et al. Impacts of ionospheric irregularities on L-band geosynchronous synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3941–3954. doi: 10.1109/TGRS.2019.2959702
    [14] JI Yifei, ZHANG Qilei, ZHANG Yongsheng, et al. Spaceborne P-band SAR imaging degradation by anisotropic ionospheric irregularities: A comprehensive numerical study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5516–5526. doi: 10.1109/TGRS.2020.2966710
    [15] QUEGAN S and LAMONT J. Ionospheric and tropospheric effects on synthetic aperture radar performance[J]. International Journal of Remote Sensing, 1986, 7(4): 525–539. doi: 10.1080/01431168608954707
    [16] ISHIMARU A, KUGA Y, LIU J, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz[J]. Radio Science, 1999, 34(1): 257–268. doi: 10.1029/1998RS900021
    [17] XU Zhengwen, WU Jian, and WU Zhensen. A survey of ionospheric effects on space-based radar[J]. Waves in Random Media, 2004, 14(2): S189–S273. doi: 10.1088/0959-7174/14/2/008
    [18] 李亮, 洪峻, 明峰, 等. 电离层时空变化对中高轨SAR成像质量的影响分析[J]. 电子与信息学报, 2014, 36(4): 915–922.

    LI Liang, HONG Jun, MING Feng, et al. Study on ionospheric effects induced by spatio-temporal variability on medium-earth-orbit SAR imaging quality[J]. Journal of Electronics &Information Technology, 2014, 36(4): 915–922.
    [19] 李雨龙, 张弘毅, 黄丽佳, 等. 同步轨道SAR电离层影响分析与仿真研究[J]. 电子测量技术, 2014, 37(9): 14–22, 27.

    LI Yulong, ZHANG Hongyi, HUANG Lijia, et al. Analysis and simulation on GEO SAR ionosphere effects[J]. Electronic Measurement Technology, 2014, 37(9): 14–22, 27.
    [20] TIAN Ye, HU Cheng, DONG Xichao, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 721–725. doi: 10.1109/LGRS.2014.2360235
    [21] HU Cheng, TIAN Ye, YANG Xiaopeng, et al. Background ionosphere effects on geosynchronous SAR focusing: Theoretical analysis and verification based on the BeiDou navigation satellite system (BDS)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1143–1162. doi: 10.1109/JSTARS.2015.2475283
    [22] DONG Xichao, HU Cheng, TIAN Weiming, et al. Design of validation experiment for analysing impacts of background ionosphere on geosynchronous SAR using GPS signals[J]. Electronics Letters, 2015, 51(20): 1604–1606. doi: 10.1049/el.2015.1545
    [23] DONG Xichao, HU Cheng, TIAN Ye, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2171–2183. doi: 10.1109/JSTARS.2016.2537401
    [24] 李力. 星载P波段合成孔径雷达中的电离层效应研究[D]. [博士论文], 国防科技大学, 2014.

    LI Li. Research on ionospheric effects in spaceborne P band synthetic aperture radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2014.
    [25] JI Yifei, ZHANG Qilei, ZHANG Yongsheng, et al. Analysis of background ionospheric effects on geosynchronous SAR imaging[J]. Radioengineering, 2017, 26(1): 130–138. doi: 10.13164/re.2017.0130
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  350
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-03-22
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回