高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件损伤的MIMO异构网络波束成形算法

徐勇军 谢豪 陈前斌 刘期烈

徐勇军, 谢豪, 陈前斌, 刘期烈. 基于硬件损伤的MIMO异构网络波束成形算法[J]. 电子与信息学报, 2021, 43(12): 3571-3579. doi: 10.11999/JEIT200776
引用本文: 徐勇军, 谢豪, 陈前斌, 刘期烈. 基于硬件损伤的MIMO异构网络波束成形算法[J]. 电子与信息学报, 2021, 43(12): 3571-3579. doi: 10.11999/JEIT200776
Yongjun XU, Hao XIE, Qianbin CHEN, Qilie LIU. Beamforming Algorithm for MIMO-based Heterogeneous Networks with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3571-3579. doi: 10.11999/JEIT200776
Citation: Yongjun XU, Hao XIE, Qianbin CHEN, Qilie LIU. Beamforming Algorithm for MIMO-based Heterogeneous Networks with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3571-3579. doi: 10.11999/JEIT200776

基于硬件损伤的MIMO异构网络波束成形算法

doi: 10.11999/JEIT200776
基金项目: 国家自然科学基金(61601071, 62071078),重庆市自然科学基金(cstc2019jcyj-xfkxX0002),重庆研究生科研创新项目(CYS20253, CYS20251),重庆市科技创新领军人才支持基金 (CSTCCXLJRC201908),重庆市自然基金重点资助项目(2019jcyj-zdxmX0008)
详细信息
    作者简介:

    徐勇军:男,1986年生,副教授,硕士生导师,研究方向为资源分配、异构无线网络、硬件损伤通信

    谢豪:男,1997年生,硕士生,研究方向为硬件损伤通信、异构网络资源分配

    陈前斌:男,1967年生,教授,博士生导师,研究方向为无线通信、多媒体信息传输与处理

    刘期烈:男,1974年生,教授,硕士生导师,研究方向为无线传感器网络、卫星通信

    通讯作者:

    陈前斌 chenqb@cqupt.edu.cn

  • 中图分类号: TN929.5

Beamforming Algorithm for MIMO-based Heterogeneous Networks with Hardware Impairments

Funds: The National Natural Science Foundation of China (61601071, 62071078), Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Graduate Scientific Research Innovation Project of Chongqing (CYS20253, CYS20251), The Chongqing Science and Technology Innovation Leading Talent Support Program (CSTCCXLJRC201908), The Basic and Advanced Research Projects of CSTC (2019jcyj-zdxmX0008)
  • 摘要: 由于多输入多输出(MIMO)异构网络能够提高系统容量和实现更多的用户接入,因此受到了学术界和工业界的广泛关注,从而成为下一代通信系统的关键技术之一。然而,由于放大器非线性、相位噪声和I/Q不均衡等因素的影响,这类硬件损伤成为制约当前MIMO异构网络波束成形性能进一步提升的瓶颈。为了解决该问题,该文提前将硬件损伤考虑到MIMO异构网络波束成形算法设计当中。首先,考虑了每个基站的最大发射功率约束和每个用户的最小信干噪比约束,建立了一个含硬件损伤参数的系统总能耗最小的资源优化问题。其次,利用等价变换和半正定松弛方法,将原非凸问题转化为凸优化问题进行求解。仿真结果表明,与完美硬件条件下的波束成形算法对比,所提算法具有较好的抗硬件损伤能力和较低的中断概率。
  • 图  1  硬件损伤条件下的两层MIMO异构网络

    图  2  系统总能耗与硬件损伤参数的关系

    图  3  系统总能耗与用户SINR阈值的关系

    图  4  系统总能耗与飞蜂窝基站天线数量的关系

    图  5  系统总能耗与宏基站天线数量的关系

    图  6  平均中断概率与$ \gamma _{{\text{MU}}}^{\min } $的关系

    图  7  平均中断概率与$ \gamma _{{\text{FU}}}^{\min } $的关系

    表  1  仿真参数

    参数参数
    $ {P^{\max }}({\text{W}}) $10$ P_n^{\max }({\text{W}}) $0.1
    ${ {{P} }_{\text{C} } }({\text{mW} })$1$ \gamma _m^{\min } $1
    $ \gamma _{n,k}^{\min } $1$ \zeta $5
    $ {\delta ^2}({\text{W}}) $10-8$ M $2
    $ N $2$ {K_1},{K_2} $2
    下载: 导出CSV
  • [1] 徐勇军, 彭瑶, 余晓磊, 等. 面向5G协作通信系统的资源分配技术综述[J]. 重庆邮电大学学报:自然科学版, 2019, 31(2): 143–157. doi: 10.3979/j.issn.1673-825X.2019.02.001

    XU Yongjun, PENG Yao, YU Xiaolei, et al. Survey on resource allocation techniques for 5G cooperative communication networks[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(2): 143–157. doi: 10.3979/j.issn.1673-825X.2019.02.001
    [2] 李国权, 徐勇军, 陈前斌. 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419

    LI Guoquan, XU Yongjun, and CHEN Qianbin. Interference efficiency-based base station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419
    [3] NGUYEN L D, TUAN H, DUONG T Q, et al. Downlink beamforming for energy-efficient heterogeneous networks with massive MIMO and small cells[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3386–3400. doi: 10.1109/TWC.2018.2811472
    [4] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [5] STUDER C, WENK M, and BURG A. MIMO transmission with residual transmit-RF impairments[C]. Proceedings of 2010 International ITG Workshop on Smart Antennas (WSA), Bremen, Germany, 2010: 189–196.
    [6] ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162
    [7] TLEBALDIYEVA L, MAHAM B, and TSIFTSIS T A. Capacity analysis of device-to-device mmWave networks under transceiver distortion noise and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5707–5712. doi: 10.1109/TVT.2020.2983417
    [8] BALLTI E, GUIZANI M, HAMDAOUI B, et al. Aggregate hardware impairments over mixed RF/FSO relaying systems with outdated CSI[J]. IEEE Transactions on Communications, 2018, 66(3): 1110–1123. doi: 10.1109/TCOMM.2017.2776261
    [9] SHARMA P K and UPADHYAY P K. Cognitive relaying with transceiver hardware impairments under interference constraints[J]. IEEE Communications Letters, 2016, 20(4): 820–823. doi: 10.1109/LCOMM.2016.2533500
    [10] SOLANKI S, UPADHYAY P, DA COSTA D B, et al. Joint impact of RF hardware impairments and channel estimation errors in spectrum sharing multiple-relay networks[J]. IEEE Transactions on Communications, 2018, 66(9): 3809–3824. doi: 10.1109/TCOMM.2018.2832623
    [11] LI Xingwang, LI Jingjing, LIU Yuanwei, et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.2019.2947670
    [12] BJÖRNSON E, HOYDIS J, KOUNTOURIS M, et al. Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7112–7139. doi: 10.1109/TIT.2014.2354403
    [13] ZHU Jun, NG D W K, WANG Ning, et al. Analysis and design of secure massive MIMO systems in the presence of hardware impairments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 2001–2016. doi: 10.1109/TWC.2017.2659724
    [14] PAPAZAFEIROPOULOS A, CLERCKX B, and RATNARAJAH T. Rate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8196–8211. doi: 10.1109/TVT.2017.2691014
    [15] BOSHKOVSKA E, NG D W K, DAI Linglong, et al. Power-efficient and secure WPCNs with hardware impairments and non-linear EH circuit[J]. IEEE Transactions on Communications, 2018, 66(6): 2642–2657. doi: 10.1109/TCOMM.2017.2783628
    [16] PAPAZAFEIROPOULOS A K and RATNARAJAH T. Downlink MIMO HCNs with residual transceiver hardware impairments[J]. IEEE Communications Letters, 2016, 20(10): 2023–2026. doi: 10.1109/LCOMM.2016.2593480
    [17] PAPAZAFEIROPOULOS A and RATNARAJAH T. Toward a realistic assessment of multiple antenna HCNs: Residual additive transceiver hardware impairments and channel aging[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9061–9073. doi: 10.1109/TVT.2017.2710188
    [18] PAPAZAFEIROPOULOS A, RATNARAJAH T, KOURTESSIS P, et al. Nuts and bolts of a realistic stochastic geometric analysis of mmWave HetNets: Hardware impairments and channel aging[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5657–5671. doi: 10.1109/TVT.2019.2908044
    [19] DAMNJANOVIC A, MONTOJO J, WEI Yongbin et al. A survey on 3GPP heterogeneous networks[J]. IEEE Wireless Communications, 2011, 18(3): 10–21. doi: 10.1109/MWC.2011.5876496
    [20] FANG Fang, CHENG Julian, and DING Zhiguo. Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1351–1364. doi: 10.1109/TVT.2018.2881314
    [21] SHENG Min, WANG Liang, WANG Xijun, et al. Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 954–968. doi: 10.1109/JSAC.2016.2544538
    [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [23] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [24] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312
    [25] CHU Zheng, ZHU Zhengyu, JOHNSTON M, et al. Simultaneous wireless information power transfer for MISO secrecy channel[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 6913–6925. doi: 10.1109/TVT.2015.2499439
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  528
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2021-09-22
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回