高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地形环境下基于CL-KA-STAP的低空风切变风速估计方法

李海 谢伶莉 张志宁

李海, 谢伶莉, 张志宁. 复杂地形环境下基于CL-KA-STAP的低空风切变风速估计方法[J]. 电子与信息学报, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773
引用本文: 李海, 谢伶莉, 张志宁. 复杂地形环境下基于CL-KA-STAP的低空风切变风速估计方法[J]. 电子与信息学报, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773
Hai LI, Lingli XIE, Zhining ZHANG. Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773
Citation: Hai LI, Lingli XIE, Zhining ZHANG. Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773

复杂地形环境下基于CL-KA-STAP的低空风切变风速估计方法

doi: 10.11999/JEIT200773
基金项目: 民机项目(MJ-2018-S-28),天津市自然基金重点项目(20JCZDJC00490),航空基金项目(20182067008),中央高校基本科研业务费项目(3122018D008),中国民航大学蓝天教学名师培养经费
详细信息
    作者简介:

    李海:男,1976年生,教授,硕士生导师,主要研究方向为机载气象雷达信号处理、分布式目标检测与参数估计、动目标检测与参数估计等

    谢伶莉:女,1995年生,硕士生,研究方向为机载气象雷达信号处理

    张志宁:男,1994年生,硕士生,研究方向为机载气象雷达信号处理

    通讯作者:

    李海 haili@cauc.edu.cn

  • 中图分类号: TN959.4

Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment

Funds: The Civil Aircraft Project (MJ-2018-S-28), The Key Projects of Tianjin Natural Fund(20JCZDJC00490), The Aviation Foundation of China (20182067008), The Basic Scientific Research Project of Universities of The CPC Central Committee (3122018D008), The Training Funds for Famous Blue Sky Teachers of Civil Aviation University of China
  • 摘要: 针对机载气象雷达在复杂的地形环境下探测低空风切变时,地杂波呈现的非均匀特征导致难以准确获得杂波统计特性,进而影响杂波抑制效果,使得风切变风速估计不准的问题,该文提出一种色加载知识辅助STAP(CL-KA-STAP)的低空风切变风速估计方法。该方法首先构造降维联合时空变换矩阵,并对待检测距离单元的回波信号进行降维处理,然后将由数字高程模型(DEM)和国家土地覆盖数据库(NLCD)获取的先验知识融入到组合空时主通道自适应处理器(CMCAP)中,构造色加载系数优化函数求解色加载系数,最后构造滤波器,实现杂波自适应滤波并准确估计风速。后续仿真结果证明了所提方法的有效性。
  • 图  1  机载平台下视探测低空风切变几何模型

    图  2  CMCAP方法原理图

    图  3  CL-KA-STAP的低空风切变风速估计方法流程

    图  4  非均匀地杂波数据特征

    图  5  机载气象雷达回波空时2维谱

    图  6  第89号距离单元滤波器频响图

    图  7  不同方法风速估计结果

    图  8  先验信息存在误差时风速估计误差结果

    表  1  不同地貌类型的参数值

    编码地貌类型${\sigma _{\rm{c}}}$$\rho $$\chi $${\beta _0}$
    ${{\rm{La}}_1}$农田10.004000${{\pi} } /2$0.200
    ${{\rm{La}}_2}$丘陵10.012600${\rm{\pi} } /2$0.400
    ${{\rm{La}}_3}$高山10.040000${{\pi}} /2$0.500
    ${{\rm{La}}_4}$泥地10.001945${{\pi}} /2$0.155
    ${{\rm{La}}_5}$雪地10.002630${{\pi}} /2$0.170
    ${{\rm{La}}_6}$草地10.005720${{\pi}} /2$0.240
    ${{\rm{La}}_7}$庄稼地10.007440${{\pi}} /2$0.280
    ${{\rm{La}}_8}$树林10.009160${{\pi}} /2$0.320
    ${{\rm{La}}_9}$裸石地10.010880${{\pi}} /2$0.360
    下载: 导出CSV

    表  2  飞机与雷达参数

    参数参数
    载机高度(m)600阵元数8
    载机速度(m/s)75采样脉冲数64
    雷达波长(m)0.032主瓣方向(°)(90, 0)
    脉冲重复频率(Hz)7000杂噪比(dB)40
    距离分辨率(m)150信噪比(dB)5
    下载: 导出CSV

    表  3  不同风速估计方法结果对比

    样本数风速估计方法均方根误差(m/s)
    0.5系统自由度空时最优17.5174
    CMCAP14.8567
    本文方法CL-KA-STAP1.8328
    0.25系统自由度EFA14.8756
    FA6.0765
    本文方法CL-KA-STAP1.9073
    下载: 导出CSV

    表  4  不同误差情况下${\alpha _{\rm{CPW}}}$的取值

    不同误差情况0.5系统自由度
    ${\alpha _{\rm{CPW}}}$取值
    0.25系统自由度
    ${\alpha _{\rm{CPW}}}$取值
    00.68540.6749
    0.10.43120.5213
    0.30.21550.2432
    0.50.09020.1059
    下载: 导出CSV
  • [1] DESHPANDE M D and STATON L. Determination of windspeed within a weather storm using airborne Doppler radar[C]. IEEE Southeastcon’91, Williamsburg, USA, 1991: 508–519. doi: 10.1109/SECON.1991.147807.
    [2] LAI Y C and BAXA E G. On the application of the LMS-based adaptive noise canceller in nonstationary environment associated with airborne Doppler weather radar[C]. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, USA, 1993, 3: 25–28. doi: 10.1109/ICASSP.1993.319426.
    [3] BAXA E J. Signal processing techniques for clutter filtering and wind shear detection[R]. NASA Report N91–24154, 1990.
    [4] WARD J. Space-time adaptive processing for airborne radar[R]. Report of Lincoln Laboratory, Lexington, MA, USA, 1998.
    [5] 吴仁彪, 张彪, 李海, 等. 基于空时自适应处理的低空风切变风速估计方法[J]. 电子与信息学报, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697

    WU Renbiao, ZHANG Biao, LI Hai, et al. Wind speed estimation for low-attitude windshear based on space-time adaptive processing[J]. Journal of Electronics &Information Technology, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697
    [6] 李海, 周盟, 陈筱浅, 等. 基于多通道联合自适应处理的微下击暴流中心风速估计方法[J]. 电子与信息学报, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094

    LI Hai, ZHOU Meng, CHEN Xiaoqian, et al. Multiple Doppler channels joint adaptive processing based central wind speed estimation for microburst[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094
    [7] 李海, 王杰. 基于CMCAP的低空风切变风速估计方法[J]. 系统工程与电子技术, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10

    LI Hai and WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP[J]. Systems Engineering and Electronics, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10
    [8] MELVIN W, WICKS M, ANTONIK P, et al. Knowledge-based space-time adaptive processing for airborne early warning radar[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(4): 37–42. doi: 10.1109/62.666835
    [9] CAPRARO C T, CAPRARO G T, BRADARIC I, et al. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080–1099. doi: 10.1109/TAES.2006.248199
    [10] RIEDL M and POTTER L C. Knowledge-aided Bayesian space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1850–1861. doi: 10.1109/TAES.2018.2805141
    [11] KANG Naixin, SHANG Zheran, and DU Qinglei. Knowledge-aided structured covariance matrix estimator applied for radar sensor signal detection[J]. Sensors, 2019, 19(3): 664. doi: 10.3390/s19030664
    [12] RIEDL M and POTTER L C. Multimodel shrinkage for knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2601–2610. doi: 10.1109/TAES.2018.2813898
    [13] BERGIN J S, TEIXEIRA C M, TECHAU P M, et al. STAP with knowledge-aided data pre-whitening[C]. The 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, USA, 2004: 289–294. doi: 10.1109/NRC.2004.1316437.
    [14] LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
    [15] BRINGI V N and CHANDRASEKAR V. Polarimetric, Doppler Weather Radar: Principles and Applications[M]. Cambridge, UK: Cambridge University Press, 2005: 1–100.
    [16] BOYER E, LARZABAL P, ADNET C et al. Parametric spectral moments estimation for wind profiling radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1859–1868. doi: 10.1109/TGRS.2003.813487
    [17] 姚晖. 分布式信号源参数估计技术研究[D]. [博士论文], 解放军信息工程大学, 2013: 9–25.

    YAO Hui. Research on parameter estimation method for distributed sources[D]. [Ph. D. dissertation], PLA Information Engineering University, 2013: 9–25.
    [18] 刘青光, 彭应宁, 孙欣, 等. 机载雷达自适应杂波抑制的联合通道变换方法[J]. 电子学报, 1994, 22(6): 1–9. doi: 10.3321/j.issn:0372-2112.1994.06.001

    LIU Qingguang, PENG Yingning, SUN Xin, et al. Adaptive clutter suppression in airborne radar by a combined channel transformation approach[J]. Acta Electronica Sinica, 1994, 22(6): 1–9. doi: 10.3321/j.issn:0372-2112.1994.06.001
    [19] 张圣鹋. 机载认知雷达中的KA-STAP研究[D]. [博士学位论文], 电子科技大学, 2017: 91–102.

    ZHANG Shenghu. Study on KA-STAP of the airborne cognitive radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017: 91–102.
    [20] MORCHIN W C. Airborne Early Warning Radar[M]. Fitchburg: Artech House, 1990: 20–100.
    [21] 乌拉比 F T, 穆尔 R K, 冯健超, 黄培康, 汪一飞, 译. 微波遥感-第二卷-雷达遥感和面目标的散射、辐射理论[M]. 北京: 科学出版社, 1987: 1–50.

    ULABY F T, MOORE R K, FUNG A K, HUANG Peikang, WANG Yifei, translation. Microwave Remote Sensing. Volume II Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Beijing: Science Press, 1987: 1–50.
    [22] ZHU Xumin, LI Jian, STOICA P, et al. Knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1325–1336. doi: 10.1109/TAES.2011.5751261
    [23] 王晓明, 李军, 张圣鹋, 等. 基于稀疏恢复谱相似度的自适应样本筛选算法[J]. 系统工程与电子技术, 2018, 40(5): 976–981. doi: 10.3969/j.issn.1001-506X.2018.05.03

    WANG Xiaoming, LI Jun, ZHANG Shenghu, et al. Adaptive sample selection algorithm based on sparse recovery spectral similarity[J]. Systems Engineering and Electronics, 2018, 40(5): 976–981. doi: 10.3969/j.issn.1001-506X.2018.05.03
    [24] 张圣鹋, 何子述, 李军, 等. 一种稳健的知识辅助STAP色加载系数优化算法[J]. 电子与信息学报, 2016, 38(8): 1942–1949. doi: 10.11999/JEIT151335

    ZHANG Shenghu, HE Zishu, LI Jun, et al. A robust colored-loading factor optimization approach for KA-STAP[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1942–1949. doi: 10.11999/JEIT151335
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  301
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2021-04-04
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回