高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度布隆过滤器的NDN网络三级名字查找方法

吴庆涛 师君如 张明川 王倩玉 朱军龙 张宏科

吴庆涛, 师君如, 张明川, 王倩玉, 朱军龙, 张宏科. 基于深度布隆过滤器的NDN网络三级名字查找方法[J]. 电子与信息学报, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766
引用本文: 吴庆涛, 师君如, 张明川, 王倩玉, 朱军龙, 张宏科. 基于深度布隆过滤器的NDN网络三级名字查找方法[J]. 电子与信息学报, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766
Qingtao WU, Junru SHI, Mingchuan ZHANG, Qianyu WANG, Junlong ZHU, Hongke ZHANG. A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766
Citation: Qingtao WU, Junru SHI, Mingchuan ZHANG, Qianyu WANG, Junlong ZHU, Hongke ZHANG. A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766

基于深度布隆过滤器的NDN网络三级名字查找方法

doi: 10.11999/JEIT200766
基金项目: 国家自然科学基金(61871430, 61976243),中原科技创新领军人才(214200510012),河南省教育厅基础研究专项(19zx010),河南省教育厅重点科研项目(20A520011)
详细信息
    作者简介:

    吴庆涛:男,1975年生,教授,研究方向为云计算、物联网、下一代网络

    师君如:女,1997年生,硕士生,研究方向为信息中心网络

    张明川:男,1977年生,教授,研究方向为物联网、下一代网络、机器学习

    王倩玉:女,1991年生,硕士生,研究方向为信息中心网络

    朱军龙:男,1982年生,副教授,研究方向为人工智能、机器学习、新型网络

    张宏科:男,1957年生,教授,研究方向为下一代网络、智慧协同网络

    通讯作者:

    张明川 zhang_mch@haust.edu.cn

  • 中图分类号: TN919.2; TP393

A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking

Funds: The National Natural Science Foundation of China (61871430, 61976243), The Leading Talents of Science and Technology in the Central Plain of China (214200510012), The Basic Research Projects in the University of Henan Province (19zx010), The Key Project of the Education Department Henan Province (20A520011)
  • 摘要: 为提高命名数据网络(Name Data Networking, NDN)路由过程中内容名字查找的效率,该文提出一种基于深度布隆过滤器的3级名字查找方法。该方法使用长短记忆神经网络(Long Short Term Memory, LSTM)与标准布隆过滤器相结合的方法优化名字查找过程;采用3级结构优化内容名字在内容存储器(Content Store, CS)、待定请求表(Pending Interest Table, PIT)中的精确查找过程,提高查找精度并降低内存消耗。从理论上分析了3级名字查找方法的假阳性率,并通过实验验证了该方法能够有效节省内存、降低查找过程的假阳性。
  • 图  1  深度布隆过滤器查找结构

    图  2  学习模型结构

    图  3  名字字符串长度分布

    图  4  初始过滤器系数选择对假阳性率的影响

    图  5  GRU大小对假阴性率和假阳性率的影响

    图  6  阈值τ大小对假阳性率和假阴性率的影响

    图  7  假阳性率

    图  8  内存消耗

    表  1  面向深度布隆过滤器的名字查找算法

     输入:内容集合S,非内容集合U,阈值$\tau $
     输出:内容名字x
     1: 调用LSTM架构使用集合S和集合U获得一个集合D
     2: 查找x在初始过滤器中进行精确匹配;
     3: while 对每一个$x \in S$ do
     4: If b[i]=1 then
     5:   将匹配内容x发送到深度学习模型中;
     6:  else
     7:  将未匹配的x发送到FIB表中进行最长前缀匹配查找;
     8: end while
     9: if $(x, y) \in D $ then//在第2级深度学习模型中进行精确匹配查找
     10: 计算$f(x)=\dfrac{1}{1+{ \rm{e} }^{-x} }$;
     11: end if
     12: if $x \in S $且$ f(x) < \tau $ then
     13: 将查找获得的内容名x在路由表中对应的数据包进行转发;
     14: else if $x \in S $且$f(x) < \tau $ then
     15: 将未匹配的内容名字x发送到第3级备份过滤器进行查找;
     16: while在备份布隆过滤器查找b[i]=1 do
     17:  将查找获得的内容名x在路由表中对应的数据包进行转发;
     18: end while
     19: else
     20: 将第3级未匹配的内容发送到FIB表中进行最长前缀匹配查找;
     21: end if
    下载: 导出CSV

    表  2  服务器配置

    主要模块具体配置
    主板LENOVO-LNVNB161216
    CPUIntel Core™ i7-9750H (6核,主频2.60 GHz)
    内存DDR4 8GB (内存频率 2667 MHz)
    下载: 导出CSV

    表  3  GRU和隐藏层参数配置与编号

    配置编号参数配置配置编号参数配置配置编号参数配置
    I型GRU大小=32,隐藏层大小=8IV型GRU大小=16,隐藏层大小=8VII型GRU大小=8,隐藏层大小=4
    II型GRU大小=32,隐藏层大小=4V型GRU大小=16,隐藏层大小=4VIII型GRU大小=4,隐藏层大小=4
    III型GRU大小=16,隐藏层大小=16VI型GRU大小=8,隐藏层大小=8VIIII型GRU大小=4,隐藏层大小=8
    下载: 导出CSV
  • [1] 杨国威, 徐泓, 李丹, 等. 未来互联网体系结构研究现状与趋势[J]. 中国基础科学, 2018, 20(3): 32–34. doi: 10.3969/j.issn.1009-2412.2018.03.006

    YANG Guowei, XU Hong, LI Dan, et al. Research status and trends of future internet architecture[J]. China Basic Science, 2018, 20(3): 32–34. doi: 10.3969/j.issn.1009-2412.2018.03.006
    [2] 黄韬, 刘江, 霍如, 等. 未来网络体系架构研究综述[J]. 通信学报, 2014, 35(8): 184–197. doi: 10.3969/j.issn.1000-436x.2014.08.023

    HUANG Tao, LIU Jiang, HUO Ru, et al. Survey of research on future network architectures[J]. Journal on Communications, 2014, 35(8): 184–197. doi: 10.3969/j.issn.1000-436x.2014.08.023
    [3] YAO Haipeng, LI Mengnan, DU Jun, et al. Artificial intelligence for information-centric networks[J]. IEEE Communications Magazine, 2019, 57(6): 47–53. doi: 10.1109/MCOM.2019.1800734
    [4] ZHANG Lixia, AFANASYEV A, BURKE J, et al. Named data networking[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 66–73. doi: 10.1145/2656877.2656887
    [5] 伊鹏, 李根, 张震. 内容中心网络中能耗优化的隐式协作缓存机制[J]. 电子与信息学报, 2018, 40(4): 770–777. doi: 10.11999/JEIT170635

    YI Peng, LI Gen, and ZHANG Zhen. Energy optimized implicit collaborative caching scheme for content centric networking[J]. Journal of Electronics &Information Technology, 2018, 40(4): 770–777. doi: 10.11999/JEIT170635
    [6] GRITTER M and CHERITON D R. An architecture for content routing support in the Internet[C]. Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems, San Francisco, USA, 2001: 4.
    [7] BARI M F, CHOWDHURY S R, AHMED R, et al. A survey of naming and routing in information-centric networks[J]. IEEE Communications Magazine, 2012, 50(12): 44–53. doi: 10.1109/MCOM.2012.6384450
    [8] 许志伟, 陈波, 张玉军. 针对层次化名字路由的聚合机制[J]. 软件学报, 2019, 30(2): 381–398. doi: 10.13328/j.cnki.jos.005572

    XU Zhiwei, CHEN Bo, and ZHANG Yujun. Hierarchical name-based route aggregation scheme[J]. Journal of Software, 2019, 30(2): 381–398. doi: 10.13328/j.cnki.jos.005572
    [9] FREDKIN E. Trie memory[J]. Communications of the ACM, 1960, 3(9): 490–499. doi: 10.1145/367390.367400
    [10] DHARMAPURIKAR S, KRISHNAMURTHY P, and TAYLOR D E. Longest prefix matching using bloom filters[J]. IEEE/ACM Transactions on Networking, 2006, 14(2): 397–409. doi: 10.1109/TNET.2006.872576
    [11] TAN Yun and ZHU Shuhua. Efficient name lookup scheme based on hash and character trie in named data networking[C]. Proceedings of the 12th Web Information System and Application Conference, Ji’nan, China, 2015: 130–135. doi: 10.1109/WISA.2015.72.
    [12] KRASKA T, BEUTEL A, CHI E H, et al. The case for learned index structures[EB/OL]. https://arxiv.org/abs/1712.01208, 2020.
    [13] MITZENMACHER M. Optimizing learned bloom filters by sandwiching[EB/OL]. https://arxiv.org/abs/1803.01474, 2018.
    [14] LI Fu, CHEN Fuyu, WU Jianming, et al. Fast longest prefix name lookup for content-centric network forwarding[C]. Proceedings of the 8th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, Austin, USA, 2012: 73–74. doi: 10.1145/2396556.2396569.
    [15] LI Dagang, LI Junmao, and DU Zheng. An improved trie-based name lookup scheme for named data networking[C]. Proceedings of 2016 IEEE Symposium on Computers and Communication, Messina, Italy, 2016: 1294–1296.
    [16] LEE J, SHIM M, and LIM H. Name prefix matching using bloom filter pre-searching for content centric network[J]. Journal of Network and Computer Application, 2016, 65: 36–47. doi: 10.1016/j.jnca.2016.02.008
    [17] GOVINDARAJAN P, SOUNDARAPANDIAN R K, GANDOMI A H, et al. Classification of stroke disease using machine learning algorithms[J]. Neural Computing and Applications, 2020, 32(3): 817–828. doi: 10.1007/s00521-019-04041-y
    [18] SUTSKEVER I, VINYALS O, and LE Q V. Sequence to sequence learning with neural networks[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3104–3112.
    [19] CHO K, VAN MËRRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
    [20] BLOOM B H. Space/time trade-offs in hash coding with allowable errors[J]. Communications of the ACM, 1970, 13(7): 422–426. doi: 10.1145/362686.362692
    [21] BRODER A and MITZENMACHER M. Network applications of bloom filters: A survey[J]. Internet Mathematics, 2004, 1(4): 485–509. doi: 10.1080/15427951.2004.10129096
    [22] Blacklist[DB/OL]. http://squidguard.mesd.k12.or.us/blacklists.tgz.2020.7.5.
    [23] WANG Qianyu, WU Qingtao, ZHANG Mingchuan, et al. Learned bloom-filter for an efficient name lookup in information-centric networking[C]. Proceedings of 2019 IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 2019: 1–6.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  373
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2021-09-24
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回