高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA-纳米颗粒共聚体在最大匹配问题中的应用

麻晶晶 许进

麻晶晶, 许进. DNA-纳米颗粒共聚体在最大匹配问题中的应用[J]. 电子与信息学报, 2021, 43(10): 2952-2957. doi: 10.11999/JEIT200764
引用本文: 麻晶晶, 许进. DNA-纳米颗粒共聚体在最大匹配问题中的应用[J]. 电子与信息学报, 2021, 43(10): 2952-2957. doi: 10.11999/JEIT200764
Jingjing MA, Jin XU. Application of DNA Nanoparticle Conjugation on the Maximum Matching Problem[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2952-2957. doi: 10.11999/JEIT200764
Citation: Jingjing MA, Jin XU. Application of DNA Nanoparticle Conjugation on the Maximum Matching Problem[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2952-2957. doi: 10.11999/JEIT200764

DNA-纳米颗粒共聚体在最大匹配问题中的应用

doi: 10.11999/JEIT200764
基金项目: 国家自然科学基金(61801279)
详细信息
    作者简介:

    麻晶晶:女,1983年生,讲师,研究方向为生物计算等

    许进:男,1959年生,教授,研究方向为生物计算等

    通讯作者:

    麻晶晶 casy@pku.edu.cn

  • 中图分类号: O157.6

Application of DNA Nanoparticle Conjugation on the Maximum Matching Problem

Funds: The National Natural Science Foundation of China (61801279)
  • 摘要: 该文提出一种DNA计算模型,利用DNA-纳米金颗粒共聚体的自组装来解决图论中的一个NP完全问题——最大匹配问题。根据模型该文设计了能够基于一个具体的图进行自组装的特殊的DNA-纳米金颗粒共聚体,然后利用一系列的实验方法来获得最终的解。这种生物化学算法可以极大地降低求解最大匹配问题的复杂度,这将为DNA自组装计算模型提供一种切实可行的方法。
  • 图  1  DNA-纳米颗粒共聚体

    图  2  连接了不同数目DNA单链的DNA-纳米金颗粒共聚体

    图  3  琼脂糖凝胶电泳中连接了不同数目的DNA链的纳米颗粒的位置

    图  4  简单无向图G

    图  5  代表顶点的DNA-纳米颗粒共聚体和代表边的DNA链及它们的杂交方式

    图  6  退火后形成的代表图G信息的自组装结构

    图  7  删除边的链置换反应

    图  8  删除边e1、边e3和边e6后的结构

    图  9  删除边e2、边e4和边e5后的结构

    图  10  琼脂糖凝胶电泳的对照

  • [1] SHARMA J, CHHABRA R, CHENG A, et al. Control of self-Assembly of DNA tubules through integration of gold nanoparticles[J]. Science, 2009, 323(5910): 112–116. doi: 10.1126/science.1165831
    [2] MASTROIANNI A J, CLARIDGE S A, and ALIVISATOS A P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds[J]. Journal of the American Chemical Society, 2009, 131(24): 8455–8459. doi: 10.1021/ja808570g
    [3] LI Bangrui, TANG Hao, YU Ruqin, et al. Single-nanoparticle ICPMS DNA assay based on hybridization-chain-reaction-mediated spherical nucleic acid assembly[J]. Analytical Chemistry, 2020, 92(3): 2379–2382. doi: 10.1021/acs.analchem.9b05741
    [4] LAN Xiang, ZHOU Xu, MCCARTHY L A, et al. DNA-enabled chiral gold nanoparticle-chromophore hybrid structure with resonant plasmon-exciton coupling gives unusual and strong circular dichroism[J]. Journal of the American Chemical Society, 2019, 141(49): 19336–19341. doi: 10.1021/jacs.9b08797
    [5] JOHNSON J A, DEHANKAR A, WINTER J O, et al. Reciprocal control of hierarchical DNA origami-nanoparticle assemblies[J]. Nano Letters, 2019, 19(12): 8469–8475. doi: 10.1021/acs.nanolett.9b02786
    [6] ZORNBERG L Z, GABRYS P A, and MACFARLANE R J. Optical processing of DNA-programmed nanoparticle superlattices[J]. Nano Letters, 2019, 19(11): 8074–8081. doi: 10.1021/acs.nanolett.9b03258
    [7] MYERS B D, PALACIOS E, MYERS D I, et al. Stimuli-responsive DNA-linked nanoparticle arrays as programmable surfaces[J]. Nano Letters, 2019, 19(7): 4535–4542. doi: 10.1021/acs.nanolett.9b01340
    [8] SHEKHIREV M, SUTTER E, and SUTTER P. In situ atomic force microscopy of the reconfiguration of on-surface self-assembled DNA-nanoparticle superlattices[J]. Advanced Functional Materials, 2019, 29(10): 1806924. doi: 10.1002/adfm.201806924
    [9] FU Wei, YOU Chao, MA Lu, et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39525–39533. doi: 10.1021/acsami.9b13829
    [10] DONG Yafei, WANG Yanchai, MA Jingjing, et al. The application of DNA nanoparticle conjugates on the graph’s connectivity problem[J]. Advances in Intelligent Systems and Computing, 2013, 212: 257–265. doi: 10.1007/978-3-642-37502-6_32
    [11] ZHANG Cheng, MA Jingjing, YANG Jing, et al. Nanoparticle aggregation logic computing controlled by DNA branch migration[J]. Applied Physics Letter, 2013, 103(9): 093106. doi: 10.1063/1.4819840
    [12] 殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825

    YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825
    [13] MIRKIN C A, LETSINGER R L, MUCIC R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(6592): 607–609. doi: 10.1038/382607a0
    [14] TATON T A, MIRKIN C A, and LETSINGER R L. Scanometric DNA array detection with nanoparticle probes[J]. Science, 2000, 289(5485): 1757–1760. doi: 10.1126/science.289.5485.1757
    [15] WEN Yongqiang, MCLAUGHLIN C K, LO P K, et al. Stable gold nanoparticle conjugation to internal DNA positions: Facile generation of discrete gold nanoparticle−DNA assemblies[J]. Bioconjugate Chemistry, 2010, 21(8): 1413–1416. doi: 10.1021/bc100160k
    [16] SHEN Xibo, SONG Chen, WANG Jinye, et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures[J]. Journal of the American Chemical Society, 2012, 134(1): 146–149. doi: 10.1021/ja209861x
    [17] YAO Guangbao, LI Jiang, CHAO Jie, et al. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami[J]. Angewandte Chemie International Edition, 2015, 54(10): 2966–2969. doi: 10.1002/anie.201410895
    [18] ZANCHET D, MICHEEL C M, PARAK W J, et al. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates[J]. Nano Letters, 2001, 1(1): 32–35. doi: 10.1021/nl005508e
    [19] ZHANG Cheng, MA Jingjing, YANG Jing, et al. Binding assistance triggering attachments of hairpin DNA onto gold nanoparticles[J]. Analytical Chemistry, 2013, 85(24): 11973–11978. doi: 10.1021/ac402908y
  • 加载中
图(10)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  270
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2020-12-20
  • 网络出版日期:  2021-02-24
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回