高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半监督信息的截集式可能性C-均值聚类算法

范九伦 高梦飞 于海燕 陈斌斌

范九伦, 高梦飞, 于海燕, 陈斌斌. 基于半监督信息的截集式可能性C-均值聚类算法[J]. 电子与信息学报, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757
引用本文: 范九伦, 高梦飞, 于海燕, 陈斌斌. 基于半监督信息的截集式可能性C-均值聚类算法[J]. 电子与信息学报, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757
Jiulun FAN, Mengfei GAO, Haiyan YU, Binbin CHEN. Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757
Citation: Jiulun FAN, Mengfei GAO, Haiyan YU, Binbin CHEN. Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757

基于半监督信息的截集式可能性C-均值聚类算法

doi: 10.11999/JEIT200757
基金项目: 国家自然科学基金(62071378, 62071379, 62071380),西安邮电大学西邮新星团队(xyt2016-01)
详细信息
    作者简介:

    范九伦:男,1964年生,教授,研究方向为模式识别与图像处理、模糊信息处理、图像安全技术

    高梦飞:男,1994年生,硕士生,研究方向为图像处理

    于海燕:女,1982年生,副教授,研究方向为模式识别与图像处理

    陈斌斌:男,1994年生,硕士生,研究方向为图像处理

    通讯作者:

    高梦飞 1143932136@qq.com

  • 中图分类号: TN911.73; TP391

Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information

Funds: The National Natural Science Foundation of China (62071378, 62071379, 62071380), New Star Team of Xi’an University of Posts & Telecommunications (xyt2016-01)
  • 摘要: 截集式可能性C-均值(C-PCM)聚类算法将截集概念引入可能性C-均值(PCM)聚类算法中,明显改善了PCM的聚类中心重合问题,并能够对噪声和奇异点的数据进行有效聚类,但该聚类算法对小目标数据聚类时仍然存在聚类中心偏移的问题。针对此问题,该文将半监督学习机制引入C-PCM的目标函数中,通过部分先验信息来指导聚类过程,提出半监督截集式可能性C-均值(SS-C-PCM)聚类算法。为了提高彩色图像的分割效率和分割准确率,将差分进化超像素(DES)算法获得的图像空间邻域信息融入SS-C-PCM目标函数中,并利用彩色直方图重构目标函数,以降低算法的计算复杂度,进而提出基于差分进化超像素的半监督截集式可能性C-均值(desSS-C-PCM)聚类算法。通过人造数据和彩色图像分割的仿真并与多种相关算法进行对比,表明该文算法能够有效改善小目标数据的聚类效果,提高算法的执行效率。
  • 图  1  desSS-C-PCM算法流程图

    图  2  针对数据集${X_{1600}}$的聚类结果

    图  3  #124084分割结果图

    表  1  针对数据集${X_{1600}}$各个算法的中心偏移量以及迭代次数

    算法FCMSS-FCMC-PCMSS-C-PCM
    中心偏移量31.939129.889123.45510.1165
    迭代次数85607038
    下载: 导出CSV

    表  2  各个算法的分割准确率对比

    图像FCMC-PCMSS-FCMSS-C-PCMdesSS-C-PCM
    #30630.72920.65400.99240.99310.9939
    #30960.98590.63240.98600.99210.9932
    #1350690.73580.56240.99190.98950.9905
    #1180350.93420.69700.93420.94570.9754
    #1240840.74860.61270.74870.80490.9658
    #860160.83930.61260.83960.96760.9931
    #1610620.88460.92850.88470.94520.9885
    #1130440.83520.62430.83540.95210.9782
    #120030.77380.58110.77400.94830.9740
    #2380110.81230.80900.95600.92820.9637
    #1010270.88400.63300.88460.92120.9418
    #280750.44730.39870.44560.59220.9842
    #240630.89190.59650.89190.89760.8920
    #2530360.61920.53600.61950.89660.9849
    #420440.75250.81810.75260.80670.8884
    #2990910.69600.79500.69640.99410.9945
    #1130160.81680.58970.81850.73760.9806
    #1470910.93160.66900.93170.92530.9413
    #670790.82740.83120.82760.89360.9918
    下载: 导出CSV
  • [1] 章毓晋. 图像分割[M]. 北京: 科学出版社, 2001: 1–5.

    ZHANG Yujin. Image Segmentation[M]. Beijing: Science Press, 2001: 1–5.
    [2] 范九伦. 灰度图像阈值分割法[M]. 北京: 科学出版社, 2019: 1–7.

    FAN Jiulun. Gray Image Thresholding Segmentation Methods[M]. Beijing: Science Press, 2019: 1–7.
    [3] ZHANG Yingchun, GUO He, CHEN Feng, et al. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation[J]. Neurocomputing, 2017, 249: 1–18. doi: 10.1016/j.neucom.2017.01.044
    [4] 胡炎, 单子力, 高峰. 基于增强指数加权均值比的SAR图像边缘检测算法[J]. 电子与信息学报, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806

    HU Yan, SHAN Zili, and GAO Feng. Edge detection algorithm for SAR image based on enhanced ROEWA[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806
    [5] 赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428

    ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
    [6] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[J]. Advanced Applications in Pattern Recognition, 1981, 22(1171): 203–239. doi: 10.1007/978-1-4757-0450-1
    [7] KRISHNAPURAM R and KELLER J M. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98–110. doi: 10.1109/91.227387
    [8] BARNI M, CAPPELLINI V, and MECOCCI A. Comments on "A possibilistic approach to clustering"[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393–396. doi: 10.1109/91.531780
    [9] KRISHNAPURAM R and KELLER J M. The possibilistic C-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385–392. doi: 10.1109/91.531779
    [10] PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517–530. doi: 10.1109/TFUZZ.2004.840099
    [11] MEMON K H, MEMON S, QURESHI M A, et al. Kernel possibilistic fuzzy c-means clustering with local information for image segmentation[J]. International Journal of Fuzzy Systems, 2019, 21(1): 321–332. doi: 10.1007/s40815-018-0537-9
    [12] YU Haiyan and FAN Jiulun. Cutset-type possibilistic C-means clustering algorithm[J]. Applied Soft Computing, 2018, 64: 401–422. doi: 10.1016/j.asoc.2017.12.024
    [13] YASUNORI E, YUKIHIRO H, MAKITO Y, et al. On semi-supervised fuzzy c-means clustering[C]. 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 2009: 1119–1124. doi: 10.1109/FUZZY.2009.5277177.
    [14] YIN Xuesong, SHU Ting, and HUANG Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization[J]. Knowledge-Based Systems, 2012, 35: 304–311. doi: 10.1016/j.knosys.2012.05.016
    [15] 赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605

    ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605
    [16] REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. The Ninth IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17. doi: 10.1109/ICCV.2003.1238308.
    [17] SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688
    [18] COMANICIU D and MEER P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619. doi: 10.1109/34.1000236
    [19] GONG Yuejiao and ZHOU Yicong. Differential evolutionary superpixel segmentation[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1390–1404. doi: 10.1109/TIP.2017.2778569
    [20] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    [21] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy c-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
    [22] PEDRYCZ W. Shadowed sets: Representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 1998, 28(1): 103–109. doi: 10.1109/3477.658584
    [23] 雒僖, 范九伦, 于海燕, 等. 基于阴影集的截集式可能性C-均值聚类截集门限的选取[J]. 计算机科学, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041

    LUO Xi, FAN Jiulun, YU Haiyan, et al. Selection of cutset threshold for cutset-type possibilistic C-means clustering based on shadowed set[J]. Computer Science, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041
    [24] ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  399
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2021-01-22
  • 网络出版日期:  2021-02-23
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回