高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

属性一致的物体轮廓划分模型

孙劲光 李桃 董祥军

孙劲光, 李桃, 董祥军. 属性一致的物体轮廓划分模型[J]. 电子与信息学报, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741
引用本文: 孙劲光, 李桃, 董祥军. 属性一致的物体轮廓划分模型[J]. 电子与信息学报, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741
Jinguang SUN, Tao LI, xiangjun DONG. Object Contour Partition Model with Consistent Properties[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741
Citation: Jinguang SUN, Tao LI, xiangjun DONG. Object Contour Partition Model with Consistent Properties[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741

属性一致的物体轮廓划分模型

doi: 10.11999/JEIT200741
基金项目: 国家自然科学基金(61702241, 61602226),国家重点研发计划(2018YFB1402902, 2018YFB1403303)
详细信息
    作者简介:

    孙劲光:女,1962年生,教授,研究方向为计算机图像视频处理与多媒体技术、计算机图形学与虚拟现实、数据科学与大数据计算

    李桃:女,1986年生,博士生,研究方向为计算机图像视频处理与多媒体技术、数据科学与大数据计算

    董祥军:男,1968年生,教授,研究方向为数据挖掘、人工智能和机器学习

    通讯作者:

    孙劲光 sunjinguang@lntu.edu.cn

  • 中图分类号: TN911.73; TP399

Object Contour Partition Model with Consistent Properties

Funds: The National Natural Science Foundation of China(61702241, 61602226),The National Key R&D Program of China (2018YFB1402902, 2018YFB1403303)
  • 摘要: 该文提出一种基于全卷积深度残差网络、结合生成式对抗网络思想的基于属性一致的物体轮廓划分模型。采用物体轮廓划分网络作为生成器进行物体轮廓划分;该网络运用结构相似性作为区域划分的重构损失,从视觉系统的角度监督指导模型学习;使用全局和局部上下文判别网络作为双路判别器,对区域划分结果进行真伪判别的同时,结合对抗式损失提出一种联合损失用于监督模型的训练,使区域划分内容真实、自然且具有属性一致性。通过实例验证了该方法的实时性、有效性。
  • 图  1  属性一致的物体轮廓划分模型框架

    图  2  不同等级的样本制作图

    图  3  原图片

    图  4  传统方法的矿石轮廓划分图

    图  5  ReUnet大矿石轮廓划分图

    图  6  小矿石轮廓划分图

    图  7  矿石轮廓划分图

    表  1  物体区域划分网络结构

    类别层卷积核池化残差膨胀重塑步长输出
    conv17×7max264×64×64
    residual conv3×3428×8×512
    dilated conv3×3328×8×512
    reshape conv1×141256×256×256
    conv23×32256×256×256
    conv31×11256×256×1
    下载: 导出CSV

    表  2  全局上下文判别网络结构

    类别层卷积核步长输出
    conv5×52×264
    conv5×52×2128
    conv5×52×2256
    conv5×52×2512
    conv5×52×2512
    conv5×52×2512
    FC1024
    下载: 导出CSV

    表  3  局部上下文判别网络结构

    类别层卷积核步长输出
    conv5×52×2128
    conv5×52×2256
    conv5×52×2512
    conv5×52×2512
    conv5×52×2512
    FC1024
    下载: 导出CSV

    表  4  大矿石轮廓划分准确率

    方法识别总数准确度误判度轮廓区域的准确率(%)
    数量准确率(%)数量误判率(%)>9080~9070~8060~70
    传统方法[16]2370165069.621205.0653.167.597.591.27
    ReUnet236499.7550.2197.342.66
    下载: 导出CSV

    表  5  小矿石轮廓划分结果

    方法识别总数准确度误判度轮廓区域的误识率(%)
    数量准确率(%)数量误判率(%)小变大大变小
    传统方法[16]288121323045.92911468.896.6762.22
    ReUnet2851898.982941.021.02
    下载: 导出CSV
  • [1] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [2] LIU Nian and HAN Junwei. DHSnet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
    [3] LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
    [4] XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1395–1403. doi: 10.1109/ICCV.2015.164.
    [5] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/cvpr.2017.660.
    [6] BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [7] 余春艳, 徐小丹, 钟诗俊. 融合去卷积与跳跃嵌套结构的显著性区域检测[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2150–2158.

    YU Chunyan, XU Xiaodan, and ZHONG Shijun. Saliency region detection based on deconvolutional and skip nested module[J]. Journal of Computer-Aided Design &Computer Graphics, 2018, 30(11): 2150–2158.
    [8] 张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076

    ZHANG Dongming, JIN Guoqing, DAI Feng, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076
    [9] HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815–828. doi: 10.1109/TPAMI.2018.2815688
    [10] 纪超, 黄新波, 曹雯, 等. 结合深度学习和全局-局部特征的图像显著区域计算[J]. 计算机辅助设计与图形学学报, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544

    JI Chao, HUANG Xinbo, CAO Wen, et al. Fusion of deep learning and global-local features of the image salient region calculation[J]. Journal of Computer-Aided Design &Computer Graphics, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544
    [11] WU Huikai, ZHANG Junge, HUANG Kaiqi, et al. FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation[J]. arXiv: 1903.11816, 2019.
    [12] 郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012

    GUO Hui, RUI Lanlan, and GAO Zhipeng. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on Communications, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012
    [13] 范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559

    FAN Jiulun and LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
    [14] 廖苗, 李阳, 赵于前, 等. 一种新的图像超像素分割方法[J]. 电子与信息学报, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111

    LIAO Miao, LI Yang, ZHAO Yuqian, et al. A new method for image superpixel segmentation[J]. Journal of Electronics &Information Technology, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111
    [15] LI He, LI Gang, WANG Xuehu, et al. Edge detection of heterogeneity in transmission images based on frame accumulation and multiband information fusion[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 204: 104117. doi: 10.1016/j.chemolab.2020.104117
    [16] 刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015

    LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional Otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  354
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-03-15
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回