高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于知识图谱共同邻居排序采样的推荐模型

李世宝 张益维 刘建航 崔学荣 张玉成

李世宝, 张益维, 刘建航, 崔学荣, 张玉成. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522-3529. doi: 10.11999/JEIT200735
引用本文: 李世宝, 张益维, 刘建航, 崔学荣, 张玉成. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522-3529. doi: 10.11999/JEIT200735
Shibao LI, Yiwei ZHANG, Jianhang LIU, Xuerong CUI, Yucheng ZHANG. Recommendation Model Based on Public Neighbor Sorting and Sampling of Knowledge Graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. doi: 10.11999/JEIT200735
Citation: Shibao LI, Yiwei ZHANG, Jianhang LIU, Xuerong CUI, Yucheng ZHANG. Recommendation Model Based on Public Neighbor Sorting and Sampling of Knowledge Graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. doi: 10.11999/JEIT200735

基于知识图谱共同邻居排序采样的推荐模型

doi: 10.11999/JEIT200735
基金项目: 国家自然科学基金(61972417, 61872385, 91938204),国家重点研发计划(2017YFC1405203),中国科学院科技服务网络计划(KFJ-STS-ZDTP-074),中央高校基本科研业务费专项资金(18CX02134A, 19CX05003A-4, 18CX02137A)
详细信息
    作者简介:

    李世宝:男,1978年生,硕士,副教授,硕士生导师,研究方向为移动计算、无线通信

    张益维:男,1995年生,硕士生,研究方向为知识图谱推荐技术

    刘建航:男,1978年生,博士,副教授,研究方向为车联网

    崔学荣:男,1979年生,博士,教授,研究方向为智能感知

    张玉成:男,1980年生,博士,副研究员,研究方向为智能信息处理

    通讯作者:

    张益维 yiwei9084@gmail.com

  • 中图分类号: TP391.1, TP311

Recommendation Model Based on Public Neighbor Sorting and Sampling of Knowledge Graph

Funds: The National Natural Science Foundation of China(61972417, 61872385, 91938204), The National Key Research and Development Project(2017YFC1405203), The CAS Science and Technology Service Network Initiative(KFJ-STS-ZDTP-074), The Fundamental Research Funds for the Central Universities(18CX02134A, 19CX05003A-4, 18CX02137A)
  • 摘要: 知识图谱作为辅助信息可以有效缓解传统推荐模型的冷启动问题。但在提取结构化信息时,现有模型都忽略了图谱中实体之间的邻居关系。针对这一问题,该文提出一种基于共同邻居排序采样的知识图谱卷积网络(KGCN-PN)推荐模型,该模型首先基于共同邻居数目对知识图谱中的每个实体邻域进行排序采样;其次利用图卷积神经网络沿着图谱中的关系路径将实体自身信息与接收域信息逐层融合;最后将用户特征向量与融合得到的实体特征向量送入预测函数中预测用户与实体项目交互的概率。实验结果表明该模型在数据稀疏场景下相较其他基线模型性能均获得了相应提升。
  • 图  1  灰色实体的两层接收域

    图  2  KGCN-PN模型架构

    图  3  Top-K推荐中不同模型的召回率

    图  4  Top-K推荐中不同模型的精确率

    图  5  Top-K推荐中不同模型的ndcg

    图  6  模型在不同规模训练集下的AUC曲线

    表  1  基于共同邻居(PN)排序的实体采样算法(算法1)

     输入:中心实体的直接邻居集合$ N\left(e\right) $
     输出:中心实体的单层接收域$ S\left(e\right) $
     (1) Function Public-Neighbors-Sampling($ e $)
     (2) if $ l\left(e\right)< K $
     (3) $ S\left(e\right)\leftarrow $ choose $ K $ entities from $ N\left(e\right) $
     (4) else
     (5) for $i={0,1},\cdots ,l\left(e\right)-1$ do
     (6) $ L\left(e\right) $.append($ N\left(e\right)\left[i\right]\left[0\right] $)
     (7) $ T\left(e\right)\leftarrow {U}_{i \in L\left(e\right)}L\left(i\right)\cap L\left(e\right) $
     (8) $ P\left(e\right)\leftarrow $do Merge Sort on $ T\left(e\right) $
     (9) for $ e\in P\left(e\right)\left[l\left(e\right)-K:l\left(e\right)\right] $ do
     (10) $ I\left(e\right) $.append(the indices of $ e $ in $ T\left(e\right) $)
     (11) Remove duplicate index in $ I\left(e\right) $
     (12) for $ i\in I\left(e\right) $ do
     (13) $ S\left(e\right) $.append($ N\left(e\right)\left[i\right]\left[0\right] $)
     (14) return $ S\left(e\right) $
    下载: 导出CSV

    表  2  图卷积算法(算法2)

     输入:交互矩阵$ {\boldsymbol Y} $;知识图谱$ G\left({\cal E},{\cal R}\right) $;接收域矩阵$ {\boldsymbol{S}} $;
     训练参数:$ {\left\{u\right\}}_{u\in {\cal U}},{\left\{e\right\}}_{e\in {\cal E}},{\left\{r\right\}}_{r\in {\cal R}},{\left\{{W}_{i},{b}_{i}\right\}}_{i=1}^{L} $;
     输出:预测函数$ {\overset{\frown} y}_{uv}={\cal{F}}(u,v|\theta ,{\boldsymbol{Y}},G)$
     (1) while model does not converge do
     (2) for $ \left(u,v\right) $ in Y do
     (3) $ {\cal M}\left[0\right]\leftarrow v $
     (4) for $ l={1,2},\cdots ,L $ do
     (5) $ {\cal M}\left[l\right]\leftarrow {\cal M}\left[l-1\right] $
     (6) for $ e\in {\cal M}\left[l-1\right] $ do
     (7) $ {\cal M}\left[l\right]\leftarrow {\cal }{\cal }{\cal M}\left[l\right]\cup $Public-Neighbors-Sampling($ e $)
     (8) return $ {\left\{{\cal M}\left[i\right]\right\}}_{i=0}^{L} $
     (9) $ {e}^{u}\left[0\right]\leftarrow e,\forall e\in {\cal M}\left[0\right] $
     (10) for $l={1,2},\cdots ,L$ do
     (11) for $ e\in {\cal M}\left[l\right] $ do
     (12) ${e}_{S\left(e\right)}^{u}\left[l-1\right]\leftarrow \sum _{ {e}^{'}\in S\left(e\right)} {\tilde {f} }_{u}\left({r}_{v,{e}^{'} }\right){ {e}^{'{u} } }\left[l-1\right]$
     (13) $ {e}^{u}\left[l\right]\leftarrow {\rm{agg}}\left({e}_{S\left(e\right)}^{u}\left[l-1\right],{e}^{u}\left[l-1\right]\right) $
     (14) $ {v}^{u}\leftarrow {e}^{u}\left[L\right] $
     (15) Calculate the probability of interaction: $ {\widehat{y}}_{uv} $
     (16) Update $ \left(\theta ,W,b\right) $ in the direction of gradient descent
     (17) return ${\cal F}$
    下载: 导出CSV

    表  3  实验数据集统计情况

    MovieLens-20M Last.FM
    用户数 138159 1872
    项目数 16954 3846
    交互次数 13501622 42346
    实体数 102569 9366
    关系种类 32 60
    3元组数 499474 15518
    下载: 导出CSV

    表  4  不同模型在点击率预测场景下的AUC值

    模型 Movie Music
    SVD 0.963 0.769
    PER 0.832 0.633
    CKE 0.924 0.744
    Ripple-Net 0.960 0.770
    KGCN-PN 0.979 0.804
    下载: 导出CSV

    表  5  KGCN-PN在不同接收域层数下的AUC值

    K
    1 2 3 4
    MovieLens-20M 0.976 0.977 0.969 0.501
    Last.FM 0.803 0.787 0.527 0.512
    下载: 导出CSV

    表  6  KGCN-PN在不同采样大小下的AUC值

    K
    2 4 8 16 32 64
    MovieLens-20M 0.977 0.977 0.976 0.976 0.973 0.970
    Last.FM 0.792 0.799 0.791 0.804 0.802 0.702
    下载: 导出CSV
  • [1] ZHENG Guanjie, ZHANG Fuzheng, ZHENG Zihan, et al. DRN: A deep reinforcement learning framework for news recommendation[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 167–176. doi: 10.1145/3178876.3185994.
    [2] 司亚利, 张付志, 刘文远. 基于签到活跃度和时空概率模型的自适应兴趣点推荐方法[J]. 电子与信息学报, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287

    SI Yali, ZHANG Fuzhi, and LIU Wenyuan. An adaptive point-of-interest recommendation method based on check-in activity and temporal-spatial probabilistic models[J]. Journal of Electronics &Information Technology, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287
    [3] KOREN Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]. The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, USA, 2008: 426–434. doi: 10.1145/1401890.1401944.
    [4] 伊华伟, 张付志, 巢进波. 基于模糊核聚类和支持向量机的鲁棒协同推荐算法[J]. 电子与信息学报, 2017, 39(8): 1942–1949. doi: 10.11999/JEIT161154

    YI Huawei, ZHANG Fuzhi, and CHAO Jinbo. Robust collaborative recommendation algorithm based on fuzzy kernel clustering and support vector machine[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1942–1949. doi: 10.11999/JEIT161154
    [5] WANG Hongwei, ZHANG Fuzheng, HOU Min, et al. SHINE: Signed heterogeneous information network embedding for sentiment link prediction[C]. The Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, USA, 2018: 592–600. doi: 10.1145/3159652.3159666.
    [6] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. The 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10. doi: 10.1145/2988450.2988454.
    [7] WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems[C]. The 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 2018: 417–426. doi: 10.1145/3269206.3271739.
    [8] ZHANG Fuzheng, YUAN N J, LIAN Defu, et al. Collaborative knowledge base embedding for recommender systems[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, San Francisco, USA, 2016: 353–362. doi: 10.1145/2939672.2939673.
    [9] WANG Hongwei, ZHANG Fuzheng, XIE Xing, et al. DKN: Deep knowledge-aware network for news recommendation[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1835–1844. doi: 10.1145/3178876.3186175.
    [10] WANG Hongwei, ZHANG Fuzheng, ZHAO Miao, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]. The World Wide Web Conference, San Francisco, USA, 2019: 2000–2010. doi: 10.1145/3308558.3313411.
    [11] HUANG Jin, ZHAO W X, DOU Hongjian, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, USA, 2018: 505–514. doi: 10.1145/3209978.3210017.
    [12] YU Xiao, REN Xiang, SUN Yizhou, et al. Personalized entity recommendation: A heterogeneous information network approach[C]. The 7th ACM International Conference on Web Search and Data Mining, New York, USA, 2014: 283–292. doi: 10.1145/2556195.2556259.
    [13] HU Binbin, SHI Chuan, ZHAO W X, et al. Leveraging meta-path based context for top- n recommendation with a neural co-attention model[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 1531–1540. doi: 10.1145/3219819.3219965.
    [14] ZHAO Huan, YAO Quanming, LI Jianda, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 635–644. doi: 10.1145/3097983.3098063.
    [15] WANG Xiao, WANG Ruijia, SHI Chuan, et al. Multi-component graph convolutional collaborative filtering[J]. The AAAI Conference on Artificial Intelligence, 2020, 34(4): 6267–6274. doi: 10.1609/aaai.v34i04.6094
    [16] WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: Knowledge graph attention network for recommendation[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 950–958. doi: 10.1145/3292500.3330989.
    [17] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1523
  • HTML全文浏览量:  668
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回