高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向物联网的轻量级增强型长距离物理层设计方法

谢桂辉 唐晓庆 焦向开 李乳演

谢桂辉, 唐晓庆, 焦向开, 李乳演. 一种面向物联网的轻量级增强型长距离物理层设计方法[J]. 电子与信息学报, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734
引用本文: 谢桂辉, 唐晓庆, 焦向开, 李乳演. 一种面向物联网的轻量级增强型长距离物理层设计方法[J]. 电子与信息学报, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734
Guihui XIE, Xiaoqing TANG, Xiangkai JIAO, Ruyan LI. A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734
Citation: Guihui XIE, Xiaoqing TANG, Xiangkai JIAO, Ruyan LI. A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734

一种面向物联网的轻量级增强型长距离物理层设计方法

doi: 10.11999/JEIT200734
基金项目: 湖北省自然科学基金(2019CFB271),中山市科技计划项目(2019AG032)
详细信息
    作者简介:

    谢桂辉:男,1988年生,讲师,博士,主要研究方向为无源物联网通信、信道编码、射频隐身通信

    唐晓庆:男,1987年生,高级工程师,博士,主要研究方向为无源物联网通信、高速数字设计、舰船无线通信

    焦向开:男,1997年生,硕士生,研究方向为信道编码

    李乳演:女,1988年生,讲师,硕士,主要研究方向为嵌入式设计、物联网通信

    通讯作者:

    唐晓庆 2010202120076@whu.edu.cn

  • 中图分类号: TN92

A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things

Funds: The Natural Science Foundation of Hubei Province (2019CFB271), The Science and Technology Project of Zhongshan City(2019AG032)
  • 摘要: 为了提高LoRa在衰落信道下的误码率性能,该文设计了一种轻量级的增强型长距离(EnLoRa)物理层。首先,采用循环码移位键控(CCSK)作为纠错码,级联对角矩阵交织和啁啾扩频(CSS)调制技术,构造了一种新的比特交织编码调制(BICM)结构。然后,基于该结构,提出了一种基于比特对数似然比信息的软CSS解调和软译码算法,并将译码输出后的外信息作为先验信息反馈至解调模块,进行迭代译码。仿真结果表明,与相同码率的LoRa系统对比,EnLoRa系统在高斯信道下的编码增益提高了0.8 dB,在瑞利信道下的编码增益提高了7 dB。在此基础之上,通过多次迭代译码,还可以获得最大2.5 dB的额外收益。时间复杂度增加不到10%,空间复杂度增幅可忽略不计。该方法可望进一步降低物联网节点的功耗,在室内、市区和工业等复杂多径场景具有较大的应用价值。
  • 图  1  EnLoRa物理层模型

    图  2  M序列发生器结构

    图  3  LoRa和EnLoRa系统在不同扩频因子下的误码率性能对比

    图  4  EnLoRa和LoRa系统的时间复杂度对比

    图  5  不同码率下的EnLoRa误码率性能

    图  6  不同迭代次数EnLoRa的误码率性能(MT=32、SF=7)

    图  7  迭代次数对系统平均功耗的影响

    表  1  LoRa和EnLoRa系统的空间复杂度(Byte)

    系统ROMRAM
    LoRa~17k~5k
    EnLoRa~22k~9k
    下载: 导出CSV
  • [1] CENTENARO M, VANGELISTA L, ZANELLA A, et al. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios[J]. IEEE Wireless Communications, 2016, 23(5): 60–67. doi: 10.1109/MWC.2016.7721743
    [2] Semtech. AN1200.22: LoRa™ modulation basics[EB/OL]. https://www.docin.com/p-1913160397.html, 2015.
    [3] ELSHABRAWY T and ROBERT J. Closed-form approximation of LoRa modulation BER performance[J]. IEEE Communications Letters, 2018, 22(9): 1778–1781. doi: 10.1109/LCOMM.2018.2849718
    [4] CATTANI M, BOANO C A, and RÖMER K. An experimental evaluation of the reliability of LoRa long-range low-power wireless communication[J]. Journal of Sensor and Actuator Networks, 2017, 6(2): 7. doi: 10.3390/jsan6020007
    [5] VILLARIM M R, DE LUNA J V H, DE FARIAS MEDEIROS D, et al. An evaluation of LoRa communication range in urban and forest areas: A case study in brazil and portugal[C]. The 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, Canada, 2019: 827–832.
    [6] SELLER O B A and SORNIN N. Low power long range transmitter[P]. USA Patent, 20140219329A1, 2014.
    [7] ROBYNS P, QUAX P, LAMOTTE W, et al. A multi-channel software decoder for the LoRa modulation scheme[C]. The 3rd International Conference on Internet of Things, Big Data and Security, Funchal, Portugal, 2018: 1–12.
    [8] MARQUET A, MONTAVONT N, and PAPADOPOULOS G Z. Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over Rayleigh channel[J]. Computer Communications, 2020, 153: 595–605. doi: 10.1016/j.comcom.2020.02.034
    [9] MROUE H, NASSER A, PARREIN B, et al. Analytical and simulation study for LoRa modulation[C]. The 2018 25th International Conference on Telecommunications, Saint-Malo, France, 2018: 655–659.
    [10] ELSHABRAWY T and ROBERT J. Interleaved chirp spreading LoRa-based modulation[J]. IEEE Internet of Things Journal, 2019, 6(2): 3855–3863. doi: 10.1109/JIOT.2019.2892294
    [11] BOMFIN R, CHAFII M, and FETTWEIS G. A novel modulation for IoT: PSK-LoRa[C]. The 2019 IEEE 89th Vehicular Technology Conference, Kuala Lumpur, Malaysia, 2019, 1–5.
    [12] ELSHABRAWY T and ROBERT T. Enhancing LoRa capacity using non-binary single parity check codes[C]. The 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications, Limassol, Cyprus, 2018: 1–7.
    [13] 徐浪, 陈晓莉, 田茂, 等. 基于Turbo码和ODPD判决法的LoRa改进方法[J]. 电子测量技术, 2020, 43(7): 142–147. doi: 10.19651/j.cnki.emt.1903832

    XU Lang, CHEN Xiaoli, TIAN Mao, et al. Improving method of LoRa based on Turbo code and ODPD[J]. Electronic Measurement Technology, 2020, 43(7): 142–147. doi: 10.19651/j.cnki.emt.1903832
    [14] 朱鸿斌, 戴胜辰, 康凯, 等. 改进型极化码混合自动请求重传法[J]. 电子与信息学报, 2017, 39(5): 1136–1141. doi: 10.11999/JEIT160736

    ZHU Hongbin, DAI Shengchen, KANG Kai, et al. An improved HARQ scheme with polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1136–1141. doi: 10.11999/JEIT160736
    [15] DILLARD G M, REUTER M, ZEIDDLER J, et al. Cyclic code shift keying: A low probability of intercept communication technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 786–798. doi: 10.1109/TAES.2003.1238736
    [16] VANGELISTA L. Frequency shift chirp modulation: The LoRa modulation[J]. IEEE Signal Processing Letters, 2017, 24(12): 1818–1821. doi: 10.1109/LSP.2017.2762960
    [17] VALENTI M C and CHENG Shi. Iterative demodulation and decoding of Turbo-coded M-ary noncoherent orthogonal modulation[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1739–1747. doi: 10.1109/JSAC.2005.853794
    [18] VITERBI A J. An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(2): 260–264. doi: 10.1109/49.661114
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  403
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2021-02-07
  • 网络出版日期:  2021-03-22
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回