高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代价敏感结构化SVM的目标跟踪

袁广林 孙子文 秦晓燕 夏良 朱虹

袁广林, 孙子文, 秦晓燕, 夏良, 朱虹. 基于代价敏感结构化SVM的目标跟踪[J]. 电子与信息学报, 2021, 43(11): 3335-3341. doi: 10.11999/JEIT200708
引用本文: 袁广林, 孙子文, 秦晓燕, 夏良, 朱虹. 基于代价敏感结构化SVM的目标跟踪[J]. 电子与信息学报, 2021, 43(11): 3335-3341. doi: 10.11999/JEIT200708
Guanglin YUAN, Ziwen SUN, Xiaoyan QIN, Liang XIA, Hong ZHU. Object Tracking Based on Cost Sensitive Structured SVM[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3335-3341. doi: 10.11999/JEIT200708
Citation: Guanglin YUAN, Ziwen SUN, Xiaoyan QIN, Liang XIA, Hong ZHU. Object Tracking Based on Cost Sensitive Structured SVM[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3335-3341. doi: 10.11999/JEIT200708

基于代价敏感结构化SVM的目标跟踪

doi: 10.11999/JEIT200708
基金项目: 安徽省自然科学基金(2008085QF325)
详细信息
    作者简介:

    袁广林:男,1973年生,博士,副教授,主要研究方向为图像处理、计算机视觉、机器学习及其应用等

    孙子文:男,1996年生,硕士生,研究方向为计算机视觉、机器学习

    秦晓燕:女,1980年生,硕士,讲师,主要研究方向为计算机视觉、机器学习等

    夏良:男,1980年生,硕士,副教授,主要研究方向为计算机视觉、机器学习、大数据等

    朱虹:女,1987年生,硕士,讲师,主要研究方向为计算机视觉、图像处理等

    通讯作者:

    袁广林 yuangl_plus@126.com

  • 中图分类号: TN911.73; TP391.4

Object Tracking Based on Cost Sensitive Structured SVM

Funds: Anhui Provincial Natural Science Foundation (2008085QF325)
  • 摘要: 基于结构化SVM的目标跟踪由于其优异的性能而受到了广泛关注,但是现有方法存在正样本和负样本不平衡问题。针对此问题,该文首先提出一种用于目标跟踪的代价敏感结构化SVM模型,其次基于对偶坐标下降原理设计了该模型的求解算法,最后利用提出的代价敏感结构化SVM实现了一种多尺度目标跟踪方法。在OTB100数据集和VOT2019数据集上进行了实验验证,实验结果表明:该文方法相比相关滤波目标跟踪方法,跟踪精度较高,相比深度目标跟踪方法,具有速度优势。
  • 图  1  结构化SVM目标跟踪中存在的正样本和负样本不平衡问题

    图  2  6种高性能跟踪器在OTB100数据集上取效果前5名的OPE, TRE和SRE性能指标曲线

    表  1  6种基于结构化SVM的跟踪器在OTB100数据集上的OPE性能与速度指标

    跟踪方法精度(pixels)成功率(AUC)速度(fps)
    Scale-DLCS_SSVM0.8370.64812.18
    DLCS_SSVM0.8050.60325.32
    Scale-DLSSVM[8]0.8030.56111.47
    DLSSVM[8]0.7650.54023.16
    Struck[1]0.6350.4597.52
    LMCF[9]0.7860.57878.23
    下载: 导出CSV

    表  2  5种跟踪方法在OTB100数据集上的速度指标(fps)

    跟踪方法Scale-DLCS_SSVMDLCS_SSVMDeepLMCF[9]DeepSRDCF[17]TADT[18]
    速度12.1825.327.451.5627.89
    下载: 导出CSV

    表  3  本文多尺度方法与近年来4种高性能跟踪方法在VOT2019数据集上实验结果

    本文SiamMask[20]GradNet[21]TADT[18]DeepSRDCF[17]
    EAO↑0.2170.2890.2130.2070.198
    Accuracy↑0.5380.5960.5310.5160.512
    Robustness↓0.5590.4610.5380.5670.572
    下载: 导出CSV
  • [1] HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 263−270.
    [2] HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109. doi: 10.1109/TPAMI.2015.2509974
    [3] YAO Rui, SHI Qinfeng, SHEN Chunhua, et al. Robust tracking with weighted online structured learning[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 158–172.
    [4] YAO Rui, SHI Qinfeng, SHEN Chunhua, et al. Part-based visual tracking with online latent structural learning[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2363–2370.
    [5] BAI Yancheng and TANG Ming. Robust tracking via weakly supervised ranking SVM[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1854–1861.
    [6] ZHANG Jianming, MA Shugao, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. The 13th European Conference on Computer Vision, Zurich, Swiss, 2014: 188–203.
    [7] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]. The 32nd International Conference on International Conference on Machine Learnin, Lille, France, 2015: 597–606.
    [8] NING Jifeng, YANG Jimei, JIANG Shaojie, et al. Object tracking via dual linear structured SVM and explicit feature map[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4266–4274.
    [9] WANG Mengmeng, LIU Yong, and HUANG Zeyi. Large margin object tracking with circulant feature maps[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4800–4808.
    [10] JI Zhangjian, FENG Kai, and QIAN Yuhua. Part-based visual tracking via structural support correlation filter[J]. Journal of Visual Communication and Image Representation, 2019, 64: 102602. doi: 10.1016/j.jvcir.2019.102602
    [11] ZUO Wangmeng, WU Xiaohe, LIN Liang, et al. Learning support correlation filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5): 1158–1172. doi: 10.1109/TPAMI.2018.2829180
    [12] ZABIH R and WOODFILL J. Non-parametric local transforms for computing visual correspondence[C]. The Third European Conference on Computer Vision, Stockholm, Sweden, 1994: 151–158.
    [13] WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    [14] KRISTAN M, BERG J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, South Korea, 2019: 2206–2241.
    [15] IRANMEHR A, MASNADI-SHIRAZI H, and VASCONCELOS N. Cost-sensitive support vector machines[J]. Neurocomputing, 2019, 343: 50–64. doi: 10.1016/j.neucom.2018.11.099
    [16] RAMANAN D. Dual coordinate solvers for large-scale structural SVMs[J]. arXiv: 1312.1743v2, 2014.
    [17] DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]. 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 621–629.
    [18] WANG Qiang, ZHANG Li, BERTINETTO L, et al. Fast online object tracking and segmentation: A unifying approach[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1328–1338.
    [19] LI Peixia, CHEN Boyu, OUYANG Wanli, et al. GradNet: Gradient-guided network for visual object tracking[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 6161–6170.
    [20] LI Xin, MA Chao, WU Baoyuan, et al. Target-aware deep tracking[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1369–1378.
    [21] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  509
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-07-11
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回