高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海中声源激发的波场成分及特性分析

孟路稳 赵德鑫 张明敏

孟路稳, 赵德鑫, 张明敏. 浅海中声源激发的波场成分及特性分析[J]. 电子与信息学报, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704
引用本文: 孟路稳, 赵德鑫, 张明敏. 浅海中声源激发的波场成分及特性分析[J]. 电子与信息学报, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704
Luwen MENG, Dexin ZHAO, Mingmin ZHANG. Analysis of Wave Field Composition and Characteristics in Shallow Sea[J]. Journal of Electronics & Information Technology, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704
Citation: Luwen MENG, Dexin ZHAO, Mingmin ZHANG. Analysis of Wave Field Composition and Characteristics in Shallow Sea[J]. Journal of Electronics & Information Technology, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704

浅海中声源激发的波场成分及特性分析

doi: 10.11999/JEIT200704
基金项目: 国家自然科学基金(51809274)
详细信息
    作者简介:

    孟路稳:男,1990年生,助理研究员,研究方向为水声物理、水声信号处理

    赵德鑫:男,1984年生,副研究员,研究方向为AUV行为控制、水声信号处理

    张明敏:男,1957年生,教授,研究方向为水声物理、水声信号处理

    通讯作者:

    赵德鑫 zhaodx2008@163.com

  • 中图分类号: O427.1

Analysis of Wave Field Composition and Characteristics in Shallow Sea

Funds: The National Natural Science Foundation of China(51809274)
  • 摘要: 为更好地认识和利用浅海波导中的声场,该文对浅海中声源激发的波场成分及特性进行了研究。提出了能给出浅海中声场全波解的理论研究方法,给出了声场的复积分表达式,并在复平面上利用围道积分对声场复积分式进行求解,得出了浅海中声源激发出的声场组成部分;同时应用高阶交错网格有限差分法对浅海中声场进行数值模拟,呈现出了不同海水深度、声源频率和声源深度下浅海波导中的波场结构和空间能量分布。研究表明:浅海中声场由离散谱部分和连续谱部分组成;其中离散谱部分包括各阶简正波和Scholte波,连续谱部分包括侧面波;简正波和Scholte波的振幅与水平传播距离的开方成反比,而侧面波的振幅与水平传播距离的平方成反比;海水越浅、声源频率越小、声源深度越大,都会导致海水中的能量越少,越有利于Scholte波的激发,此时声源辐射的能量主要以Scholte波的形式传播出去,能量更多地集中在海底界面处。
  • 图  1  浅海波导模型

    图  2  积分路径变换

    图  3  海水深度为30 m时的能量分布图

    图  4  海水深度为80 m时的能量分布图

    图  5  海水深度为30 m时的波场快照

    图  6  声源频率为20 Hz时的能量分布图

    图  7  声源频率为60 Hz时的能量分布图

    图  8  声源深度为10 m时的能量分布图

    图  9  声源深度为46 m时的能量分布图

    表  1  浅海波导模型中的介质类型及其声学参数

    介质类型纵波速度cp(m/s)横波速度cs(m/s)密度ρ(kg/m3)
    海水150001000
    砂岩海底350018002300
    下载: 导出CSV
  • KOZACZKA E and GRELOWSKA G. Shipping low frequency noise and its propagation in shallow water[J]. Acta Physica Polonica A, 2011, 119(6A): 1009–1012. doi: 10.12693/APhysPolA.119.1009
    LUNKOV A A and KATSNELSON B G. Using discrete low-frequency components of shipping noise for gassy sediment characterization in shallow water[J]. The Journal of the Acoustical Society of America, 2020, 147(5): EL428–EL433. doi: 10.1121/10.0001277
    DUNCAN A J, GAVRILOV A N, MCCAULEY R D, et al. Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer[J]. The Journal of the Acoustical Society of America, 2013, 134(1): 207–215. doi: 10.1121/1.4809723
    TOLLEFSEN D. Thin-sediment shear-induced effects on low-frequency broadband acoustic propagation in a shallow continental sea[J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2718–2726. doi: 10.1121/1.423855
    KOZACZKA E and GRELOWSKA G. Propagation of ship-generated noise in shallow sea[J]. Polish Maritime Research, 2018, 25(2): 37–46. doi: 10.2478/pomr-2018-0052
    朱子尧, 韩树平, 郭正东, 等. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法[J]. 电子与信息学报, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239

    ZHU Ziyao, HAN Shuping, GUO Zhengdong, et al. Single beacon location algorithm based on nonlinear fading filter under multiplicative noise background[J]. Journal of Electronics &Information Technology, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239
    AKAL T and BERKSON J M. Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustics[M]. Boston: Springer, 1986: 1–20. doi: 10.1007/978-1-4613-2201-6.
    KATSNELSON B, PETNIKOV V, and LYNCH J. Fundamentals of Shallow Water Acoustics[M]. Boston: Springer, 2012: 1–11. doi: 10.1007/978-1-4419-9777-7.
    莫亚枭. 基于耦合简正波理论的水平变化波导声场建模与特性分析[D]. [博士论文], 哈尔滨工程大学, 2015.

    MO Yaxiao. Acoustic field modeling and analysis based on coupled-mode in range-development waveguide[D]. [Ph. D. dissertation], Harbin Engineering University, 2015.
    SABATINI R and CRISTINI P. A multi-domain collocation method for the accurate computation of normal modes in open oceanic and atmospheric waveguides[J]. Acta Acustica united with Acustica, 2019, 105(3): 464–474. doi: 10.3813/AAA.919328
    KOESSLER M W, DUNCAN A J, GAVRILOV A N. Low-frequency acoustic propagation modelling for Australian range-independent environments[J]. Acoustics Australia, 2017, 45(2): 331–341. doi: 10.1007/s40857-017-0108-5
    王逸林, 马世龙, 邹男, 等. 时空域联合的水下未知线谱目标检测方法[J]. 电子与信息学报, 2019, 41(7): 1682–1689. doi: 10.11999/JEIT180796

    WANG Yilin, MA Shilong, ZOU Nan, et al. Detection of unknown line-spectrum underwater target using space-time processing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1682–1689. doi: 10.11999/JEIT180796
    孟路稳, 罗夏云, 程广利, 等. 海底地震波波动成分及传播特性分析[J]. 上海交通大学学报, 2018, 52(12): 1627–1633. doi: 10.16183/j.cnki.jsjtu.2018.12.012

    MENG Luwen, LUO Xiayun, CHENG Guangli, et al. Components and propagation characteristics of seabed seismic waves[J]. Journal of Shanghai Jiaotong University, 2018, 52(12): 1627–1633. doi: 10.16183/j.cnki.jsjtu.2018.12.012
    罗夏云, 孟路稳, 程广利, 等. 浅海地震波波动成分及传播规律分析[J]. 华中科技大学学报: 自然科学版, 2019, 47(1): 120–126. doi: 10.13245/j.hust.190122

    LUO Xiayun, MENG Luwen, CHENG Guangli, et al. Analysis of wave component and propagation rule of seismic wave in shallow sea[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(1): 120–126. doi: 10.13245/j.hust.190122
    LU Zaihua, ZHANG Zhihong, and GU Jiannong. Analysis on the frequency dispersion characteristics of seismic wave caused by low frequency sound source in shallow sea[J]. Ocean Engineering, 2015, 106: 354–359. doi: 10.1016/j.oceaneng.2015.07.019
    LI Li, PIAO Shengchun, ZHANG Haigang, et al. Broadband modeling of sound propagation in shallow water with an irregular elastic bottom[J]. The Journal of the Acoustical Society of America, 2014, 135(4): 2302. doi: 10.1121/1.4877578
    JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational Ocean Acoustics[M]. New York: Springer, 2011: 457–530. doi: 10.1007/978-1-4419-8678-8.
    O’REILLY O, LUNDQUIST T, DUNHAM E M, et al. Energy stable and high-order-accurate finite difference methods on staggered grids[J]. Journal of Computational Physics, 2017, 346: 572–589. doi: 10.1016/j.jcp.2017.06.030
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  325
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2021-02-05
  • 网络出版日期:  2021-02-22
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回