高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻开关混沌电路及其吸引子共存现象研究

马铭磷 刘颖 李志军

马铭磷, 刘颖, 李志军. 忆阻开关混沌电路及其吸引子共存现象研究[J]. 电子与信息学报, 2021, 43(12): 3758-3765. doi: 10.11999/JEIT200689
引用本文: 马铭磷, 刘颖, 李志军. 忆阻开关混沌电路及其吸引子共存现象研究[J]. 电子与信息学报, 2021, 43(12): 3758-3765. doi: 10.11999/JEIT200689
Minglin MA, Ying LIU, Zhijun LI. Study on Coexistence of Multipe Attractors in Memristor-based Switching Chaotic Circuits[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3758-3765. doi: 10.11999/JEIT200689
Citation: Minglin MA, Ying LIU, Zhijun LI. Study on Coexistence of Multipe Attractors in Memristor-based Switching Chaotic Circuits[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3758-3765. doi: 10.11999/JEIT200689

忆阻开关混沌电路及其吸引子共存现象研究

doi: 10.11999/JEIT200689
基金项目: 国家重点研发计划(2018AAA0103300)
详细信息
    作者简介:

    马铭磷:男,1978年生,副教授,研究生导师,研究方向为射频集成电路设计、非线性电路与系统

    刘颖:女,1997年生,硕士生,研究方向为开关电路系统非线性动力学

    李志军:男,1973年生,教授,研究生导师,研究方向为非线性电路与系统、数模混合集成电路

    通讯作者:

    马铭磷 minglin_ma@xtu.edu.cn

  • 中图分类号: TN601

Study on Coexistence of Multipe Attractors in Memristor-based Switching Chaotic Circuits

Funds: The National Key Research and Development Project(2018AAA0103300)
  • 摘要: 为了研究忆阻开关电路的动力学行为,该文提出一种具有多吸引子共存现象的忆阻开关混沌电路。在该电路中存在多吸引子分岔,当系统中发生边界碰撞之后,系统中将产生不同的吸引子共存现象。其中包括单周期极限环与混沌吸引子共存,不同的混沌吸引子共存,对称的2周期极限环共存现象,以及对称的2周期极限环与5周期极限环共存现象等。该文通过相图、分岔图等数值仿真,分析了该电路的动力学行为,并利用PSIM电路仿真验证了其电路的可行性,对开关电路中多吸引子共存现象和混沌应用的研究具有重要意义。
  • 图  1  忆阻开关混沌电路图

    图  2  忆阻器RM等效电路

    图  3  开关电路的工作状态电路图

    图  4  电路时序波形图

    图  5  状态变量Z随参数E变化的系统共存分岔图

    图  6  随参数E变化的X-Z相轨图

    图  7  PSIM仿真电路原理图

    图  8  电路的PSIM仿真时序波形图

    图  9  电路的PSIM仿真相图

    表  1  忆阻开关混沌电路的参数选取

    参数 名称 取值
    C1, C2 电容 10 nF
    L 电感 20 mH
    R 电阻 100 $\Omega $
    RC 电阻 30 $\Omega $
    Vref 参考电压 1 V
    Ra, Rb 电阻 1 k $\Omega $
    Rd 电阻 30 $\Omega $
    C0 电容 20 nF
    p 比例因子 –0.5
    下载: 导出CSV
  • [1] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [3] YANG Feifei, MOU Jun, SUN Kehui, et al. Color image compression-encryption algorithm based on fractional-order memristor chaotic circuit[J]. IEEE Access, 2019, 7: 58751–58763. doi: 10.1109/ACCESS.2019.2914722
    [4] 牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法[J]. 电子与信息学报, 2020, 42(6): 1383–1391. doi: 10.11999/JEIT190849

    NIU Ying and ZHANG Xuncai. Image encryption algorithm of based on variable step length Josephus traversing and DNA dynamic coding[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1383–1391. doi: 10.11999/JEIT190849
    [5] DUAN Shukai, HU Xiaofang, DONG Zhekang, et al. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1202–1213. doi: 10.1109/TNNLS.2014.2334701
    [6] YAO Wei, WANG Chunhua, CAO Jinde, et al. Hybrid multisynchronization of coupled multistable memristive neural networks with time delays[J]. Neurocomputing, 2019, 363: 281–294. doi: 10.1016/j.neucom.2019.07.014
    [7] ZHANG Xiaohong and LONG Keliu. Improved learning experience memristor model and application as neural network synapse[J]. IEEE Access, 2019, 7: 15262–15271. doi: 10.1109/ACCESS.2019.2894634
    [8] TAN Yumei and WANG Chunhua. A simple locally active memristor and its application in HR neurons[J]. Chaos, 2020, 30(5): 053118. doi: 10.1063/1.5143071
    [9] 贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117

    HE Lifang, CHEN Jun, and ZHANG Tianqi. Performance analysis of short reference multi-user differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117
    [10] TOLBA M F, SAYED W S, FOUDA M E, et al. Digital emulation of a versatile memristor with speech encryption application[J]. IEEE Access, 2019, 7: 174280–174297. doi: 10.1109/ACCESS.2019.2957300
    [11] LIU Gongzhi, ZHENG Lijing, WANG Guangyi, et al. A carry lookahead adder based on hybrid CMOS-Memristor logic circuit[J]. IEEE Access, 2019, 7: 43691–43696. doi: 10.1109/ACCESS.2019.2907976
    [12] MIN Xiaotao, WANG Xiaoyuan, ZHOU Pengfei, et al. An optimized memristor-based hyperchaotic system with controlled hidden attractors[J]. IEEE Access, 2019, 7: 124641–124646. doi: 10.1109/ACCESS.2019.2938183
    [13] JIN Peipei, WANG Guangyi, IU H H C, et al. A locally active memristor and its application in a chaotic circuit[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(2): 246–250. doi: 10.1109/TCSII.2017.2735448
    [14] BAO B C, LIU Z, and XU J P. Steady periodic memristor oscillator with transient chaotic behaviours[J]. Electronics Letters, 2010, 46(3): 228–230. doi: 10.1049/el.2010.3114
    [15] 谭志平, 曾以成, 李志军, 等. 浮地型忆阻器混沌电路的分析与实现[J]. 仪器仪表学报, 2014, 35(9): 2123–2129.

    TAN Zhiping, ZENG Yicheng, LI Zhijun, et al. Analysis and implementation of a floating memristor chaotic circuit[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 2123–2129.
    [16] WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+1-scroll chaotic attractors system[J]. Chaos, 2017, 27(3): 033114. doi: 10.1063/1.4979039
    [17] BAO Bocheng, WANG Ning, XU Quan, et al. A simple third-order memristive band pass filter chaotic circuit[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(8): 977–981. doi: 10.1109/TCSII.2016.2641008
    [18] LAI Qiang, KUATE P D K, LIU Feng, et al. An extremely simple chaotic system with infinitely many coexisting attractors[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(6): 1129–1133. doi: 10.1109/TCSII.2019.2927371
    [19] CHIN W, OTT E, NUSSE H E, et al. Grazing bifurcations in impact oscillators[J]. Physical Review E, 1994, 50(6): 4427–4444. doi: 10.1103/PhysRevE.50.4427
    [20] SETH S and BANERJEE S. Study of an inductorless chaos generator[J]. Proc. Conf. Nonlin. Syst. Dyn. IISER Kolkata, 2016, 16(8): 1–18.
    [21] OHNISHI M and INABA N. A singular bifurcation into instant chaos in a piecewise-linear circuit[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1994, 41(6): 433–442. doi: 10.1109/81.295239
    [22] BANERJEE S and CHAKRABARTY K. Nonlinear modeling and bifurcations in the boost converter[J]. IEEE Transactions on Power Electronics, 1998, 13(2): 252–260. doi: 10.1109/63.662832
    [23] BANERJEE S, PARUI S, and GUPTA A. Dynamical effects of missed switching in current-mode controlled DC–DC converters[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2004, 51(12): 649–654. doi: 10.1109/TCSII.2004.838438
    [24] DUTTA M, NUSSE H E, OTT E, et al. Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems[J]. Physical Review Letters, 1999, 83(21): 4281–4284. doi: 10.1103/PhysRevLett.83.4281
    [25] SETH S and BANERJEE S. Experimental observation of multiple attractor bifurcation in an electronic circuit[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(9): 1254–1258. doi: 10.1109/TCSII.2018.2828409
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  467
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2021-03-06
  • 录用日期:  2021-03-09
  • 网络出版日期:  2021-04-25
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回