高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间和通道注意力机制的目标跟踪方法

刘嘉敏 谢文杰 黄鸿 汤一明

刘嘉敏, 谢文杰, 黄鸿, 汤一明. 基于空间和通道注意力机制的目标跟踪方法[J]. 电子与信息学报, 2021, 43(9): 2569-2576. doi: 10.11999/JEIT200687
引用本文: 刘嘉敏, 谢文杰, 黄鸿, 汤一明. 基于空间和通道注意力机制的目标跟踪方法[J]. 电子与信息学报, 2021, 43(9): 2569-2576. doi: 10.11999/JEIT200687
Jiamin LIU, Wenjie XIE, Hong HUANG, Yiming TANG. Spatial and Channel Attention Mechanism Method for Object Tracking[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2569-2576. doi: 10.11999/JEIT200687
Citation: Jiamin LIU, Wenjie XIE, Hong HUANG, Yiming TANG. Spatial and Channel Attention Mechanism Method for Object Tracking[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2569-2576. doi: 10.11999/JEIT200687

基于空间和通道注意力机制的目标跟踪方法

doi: 10.11999/JEIT200687
基金项目: 国家自然科学基金(41371338)、重庆市基础与前沿研究计划(cstc2018jcyjAX0093)、重庆市留学人员回国创业创新支持计划(cx2019144)、重庆市研究生科研创新项目(CYB19039, CYB18048)
详细信息
    作者简介:

    刘嘉敏:男,1973年生,副教授,研究方向为图像处理、模式识别

    谢文杰:男,1995年生,硕士生,研究方向为图像处理、视频跟踪

    黄鸿:男,1980年生,教授,研究方向为流形学习、模式识别和遥感影像智能化处理

    汤一明:男,1993年生,博士生,研究方向为模式识别、图像处理、深度学习和视觉跟踪

    通讯作者:

    刘嘉敏 liujm@cqu.edu.cn

  • 中图分类号: TN911.73; TP391.4

Spatial and Channel Attention Mechanism Method for Object Tracking

Funds: The National Natural Science Foundation of China (41371338), Chongqing Basic and Frontier Research Program (cstc2018jcyjAX0093), Chongqing Returned Overseas Students’ Entrepreneurship and Innovation Support Program (cx2019144), Chongqing Graduate Research and Innovation Project (CYB19039, CYB18048)
  • 摘要: 目标跟踪是计算机视觉中重要的研究领域之一,大多跟踪算法不能有效学习适合于跟踪场景的特征限制了跟踪算法性能的提升。该文提出了一种基于空间和通道注意力机制的目标跟踪算法(CNNSCAM)。该方法包括离线训练的表观模型和自适应更新的分类器层。在离线训练时,引入空间和通道注意力机制模块对原始特征进行重新标定,分别获得空间和通道权重,通过将权重归一化后加权到对应的原始特征上,以此挑选关键特征。在线跟踪时,首先训练全连接层和分类器层的网络参数,以及边界框回归。其次根据设定的阈值采集样本,每次迭代都选择分类器得分最高的负样本来微调网络层参数。在OTB2015数据集上的实验结果表明:相比其他主流的跟踪算法,该文所提算法获得了更好的跟踪精度,重叠成功率和误差成功率分别为67.6%,91.2%。
  • 图  1  算法模型

    图  2  空间注意力机制

    图  3  通道注意力机制

    图  4  在OTB2015数据集上网络嵌入CAM, SAM的精度和重合度成功率

    图  5  算法在OTB2015数据集上的整体精度和成功率

    图  6  多个序列中部分跟踪结果

    表  1  在OTB2015数据集中的11个跟踪场景下算法的重叠成功率

    IVOPRSVOCCMDFMIPROVDEFBCLR
    CNNSCAM0.6800.6570.6630.6440.6710.6580.6600.6510.6310.6750.622
    DaSiamRPN0.6620.6440.6410.6170.6250.6210.6520.5370.6520.6420.588
    TADT0.6810.6460.6550.6430.6710.6570.6210.6250.6070.6220.634
    MCPF0.6290.6190.6040.6200.5990.5970.6200.5530.5690.6010.581
    CNN-SVM0.5370.5480.4890.5140.5780.5460.5480.4880.5470.5480.403
    BACF0.5470.5060.5320.4750.5410.5110.4970.4830.4990.5520.502
    下载: 导出CSV

    表  2  在OTB2015数据集中的11个跟踪场景下算法的距离误差成功率

    AttributeIVOPRSVOCCMDFMIPROVDEFBCLR
    CNNSCAM0.9050.9010.9100.8620.8620.8690.9100.8640.8800.9270.889
    DaSiamRPN0.8780.8780.8580.8180.8200.8190.8890.7200.8870.8560.814
    TADT0.8650.8720.8630.8420.8330.8340.8320.8160.8220.8050.881
    MCPF0.8820.8160.8620.8620.8400.8450.8880.7640.8150.8230.911
    CNN-SVM0.7920.7980.7850.7270.7510.7470.8130.6500.7910.7760.811
    BACF0.6650.6500.6730.5900.6490.6270.6450.6130.6550.7000.665
    下载: 导出CSV

    表  3  在OTB2015数据集中固定v=1.00时,不同A取值的距离误差成功率

    A取值0.10.20.30.40.50.60.70.80.91.00
    Prec0.6860.7700.8340.8500.8770.9120.8760.8860.8750.858
    下载: 导出CSV

    表  4  在OTB2015数据集中固定A=0.6时,不同v取值的距离误差成功率

    v取值1.001.011.021.031.041.051.061.071.081.091.10
    Suc0.5990.6210.6410.6510.6610.6760.6710.6660.6570.6430.622
    下载: 导出CSV
  • [1] 蒲磊, 冯新喜, 侯志强, 等. 基于自适应背景选择和多检测区域的相关滤波算法[J]. 电子与信息学报, 2020, 42(12): 3061–3067. doi: 10.11999/JEIT190931

    PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Correlation filter algorithm based on adaptive context selection and multiple detection areas[J]. Journal of Electronics &Information Technology, 2020, 42(12): 3061–3067. doi: 10.11999/JEIT190931
    [2] 李康, 李亚敏, 胡学敏, 等. 基于卷积神经网络的鲁棒高精度目标跟踪算法[J]. 电子学报, 2018, 46(9): 2087–2093. doi: 10.3969/j.issn.0372-2112.2018.09.007

    LI Kang, LI Yamin, HU Xuemin, et al. A robust and accurate object tracking algorithm based on convolutional neural network[J]. Acta Electronica Sinica, 2018, 46(9): 2087–2093. doi: 10.3969/j.issn.0372-2112.2018.09.007
    [3] 王鹏, 孙梦宇, 王海燕, 等. 一种目标响应自适应的通道可靠性跟踪算法[J]. 电子与信息学报, 2020, 42(8): 1950–1958. doi: 10.11999/JEIT190569

    WANG Peng, SUN Mengyu, WANG Haiyan, et al. An object tracking algorithm with channel reliability and target response adaptation[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1950–1958. doi: 10.11999/JEIT190569
    [4] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 597–606.
    [5] ZHU Zheng, WANG Qiang, LI Bo, et al. Distractor-aware Siamese networks for visual object tracking[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 104–119. doi: 10.1007/978-3-030-01240-3_7.
    [6] LI Xin, MA Chao, WU Baoyuan, et al. Target-aware deep tracking[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1369–1378. doi: 10.1109/CVPR.2019.00146.
    [7] WANG Ning, SONG Yibing, MA Chao, et al. Unsupervised deep tracking[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1308–1317.
    [8] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [9] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 1352–1368. doi: 10.1007/978-3-030-01234-2_1.
    [10] WANG Qiang, TENG Zhu, XING Junliang, et al. Learning attentions: Residual attentional Siamese network for high performance online visual tracking[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4854–4863. doi: 10.1109/CVPR.2018.00510.
    [11] CHEN Boyu, LI Peixia, CHONG Sun, et al. Multi attention module for visual tracking[J]. Pattern Recognition, 2019, 87: 80–93. doi: 10.1016/j.patcog.2018.10.005
    [12] 张文明, 姚振飞, 高雅昆, 等. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J]. 电子与信息学报, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229

    ZHANG Wenming, YAO Zhenfei, GAO Yakun, et al. A deep convolutional network for saliency object detection with balanced accuracy and high efficiency[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
    [13] WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    [14] ZHANG Tianzhu, XU Changsheng, and YANG M H. Multi-task correlation particle filter for robust object tracking[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4819–4827. doi: 10.1109/CVPR.2017.512.
    [15] GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1144–1152. doi: 10.1109/ICCV.2017.129.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1635
  • HTML全文浏览量:  1359
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 修回日期:  2021-03-20
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回