[1] |
杜小妮, 李丽, 张福军. 基于模2p m的欧拉商的二元序列的线性复杂度[J]. 电子与信息学报, 2019, 41(12): 3000–3005. doi: 10.11999/JEIT190071DU Xiaoni, LI Li, and ZHANG Fujun. Linear complexity of binary sequences derived from euler quotients modulo 2p m[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3000–3005. doi: 10.11999/JEIT190071
|
[2] |
王艳, 薛改娜, 李顺波, 等. 一类新的周期为2p m的q阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2019, 41(9): 2151–2155. doi: 10.11999/JEIT180884WANG Yan, XUE Gaina, LI Shunbo, et al. The linear complexity of a new class of generalized cyclotomic sequence of order q with period 2p m[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2151–2155. doi: 10.11999/JEIT180884
|
[3] |
YANG Bo, DU Tianqi, and XIAO Zibi. Linear complexity of generalized cyclotomic binary sequences of period pq[J]. Journal.of Mathematics, 2020, 40(2): 139–148. doi: 10.13548/j.sxzz.2020.02.004
|
[4] |
李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequence with period 2pq[J]. Journal of Electronics &Information Technology, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751
|
[5] |
杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189DU Xiaoni, ZHAO Liping, and WANG Lianhua. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo 2p2[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189
|
[6] |
仲燕, 张胜元, 柯品惠. 一类新的周期为2p m的四元广义分圆序列的线性复杂度研究[J]. 福建师范大学学报: 自然科学版, 2020, 36(1): 7–11. doi: 10.12046/j.issn.1000-5277.2020.01.002ZHONG Yan, ZHANG Shengyuan, and KE Pinhui. Research on linear complexity of a new class of quaternary generalized cyclotomic sequence with period 2p m[J]. Journal of Fujian Normal University:Natural Science Edition, 2020, 36(1): 7–11. doi: 10.12046/j.issn.1000-5277.2020.01.002
|
[7] |
陈智雄, 吴晨煌. 关于二元割圆序列的k-错线性复杂度[J]. 通信学报, 2019, 40(2): 197–206. doi: 10.11959/j.issn.1000-436x.2019034CHEN Zhixiong and WU Chenhuang. k-error linear complexity of binary cyclotomic generators[J]. Journal on Communications, 2019, 40(2): 197–206. doi: 10.11959/j.issn.1000-436x.2019034
|
[8] |
刘龙飞, 杨晓元, 陈海滨. 周期为p m的广义割圆序列的 $ \frac{{p - 1}}{2}$ -错线性复杂度[J]. 电子与信息学报, 2013, 35(1): 191–195. doi: 10.3724/SP.J.1146.2012.00837LIU Longfei, YANG Xiaoyuan, and CHEN Haibin. On the $ \dfrac{{p - 1}}{2}$-error linear complexity of generalized cyclotomic sequence with length p m[J]. Journal of Electronics &Information Technology, 2013, 35(1): 191–195. doi: 10.3724/SP.J.1146.2012.00837
|
[9] |
吴晨煌, 许春香, 杜小妮. 周期为p2的q元序列的k-错线性复杂度[J]. 通信学报, 2019, 40(12): 21–28. doi: 10.11959/j.issn.1000-436x.2019230WU Chenhuang, XU Chunxiang, and Du Xiaoni. k-error linear complexity of q-ary sequence of period p2[J]. Journal on Communications, 2019, 40(12): 21–28. doi: 10.11959/j.issn.1000-436x.2019230
|
[10] |
陈智雄, 牛志华, 吴晨煌. 周期为素数平方的二元序列的k-错线性复杂度[J]. 密码学报, 2019, 6(5): 574–584. doi: 10.13868/j.cnki.jcr.000323CHEN Zhixiong, NIU Zhihua, and WU Chenhuang. On k-error linear complexity of prime-square periodic binary sequences[J]. Journal of Cryptologic Research, 2019, 6(5): 574–584. doi: 10.13868/j.cnki.jcr.000323
|
[11] |
MEIER W and STAFFELBACH O. The self-shrinking generator[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Perugia, Italy, 1994: 205–214.
|
[12] |
BLACKBURN S R. The linear complexity of the self-shrinking generator[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2073–2077. doi: 10.1109/18.782139
|
[13] |
KANSO A. Modified self-shrinking generator[J]. Computers and Electrical Engineering, 2010, 36(5): 993–1001. doi: 10.1016/j.compeleceng.2010.02.004
|
[14] |
王锦玲, 邹慧仙. 关于m-序列模加实现的自缩序列[J]. 计算机工程与应用, 2015, 51(19): 110–113. doi: 10.3778/j.issn.1002-8331.1310-0089WANG Jinling and ZOU Huixian. Self-shrinking sequence with modular addition on m-sequence[J]. Computer Engineering and Applications, 2015, 51(19): 110–113. doi: 10.3778/j.issn.1002-8331.1310-0089
|
[15] |
王锦玲, 王娟, 陈忠宝. GF(3)上多位自收缩序列的模型与研究[M]. 何大可, 黄月江. 密码学进展——China Cypt’2007: 中国密码学会2007年会论文集. 成都: 西南交通大学出版社, 2007: 299–300.WANG Jinling, WANG Juan, and CHEN Zhongbao. The model and studying of multi-self-shrinking sequences on GF(3)[M]. HE D K, HUANG Y J. Progress on Cryptography——China Cypt’2007: Proceedings of 2007 Annual Meeting of Chinese Cryptology Society. Chengdu: Southwest Jiaotong University Press, 2007: 299–300.
|
[16] |
王锦玲, 陈亚华, 兰娟丽. 扩展在上GF(3)新型自缩序列模型及研究[J]. 计算机工程与应用, 2009, 45(35): 114–119. doi: 10.3778/j.issn.1002-8331.2009.35.035WANG Jinling, CHEN Yahua, and LAN Juanli. New model and studying of self-shrinking sequence developed on GF(3)[J]. Computer Engineering and Applications, 2009, 45(35): 114–119. doi: 10.3778/j.issn.1002-8331.2009.35.035
|
[17] |
胡予璞, 张玉清, 肖国镇. 对称密码学[M]. 北京: 机械工业出版社, 2002: 66–74.HU Y P, ZHANG Y Q, XIAO G Z. Symmetric Key Cryptography[M]. Beijing: Machinery Industry Press, 2002: 66–74.
|
[18] |
王慧娟, 王锦玲. GF(q)上广义自缩序列的线性复杂度[J]. 电子学报, 2011, 39(2): 414–418.WANG Huijuan and WANG Jinling. The linear complexity of the generalized self-shrinking generator on GF(q)[J]. Acta Electronica Sinica, 2011, 39(2): 414–418.
|
[19] |
LIDL R and NIEDERREITER H. Finite Fields[M]. Reading, US: Addison-Wesley Publishing Company, 1983: 271–272.
|