高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GF(3)上新型自缩控序列的周期与线性复杂度

王锦玲 崔静静

王锦玲, 崔静静. GF(3)上新型自缩控序列的周期与线性复杂度[J]. 电子与信息学报, 2021, 43(8): 2149-2155. doi: 10.11999/JEIT200676
引用本文: 王锦玲, 崔静静. GF(3)上新型自缩控序列的周期与线性复杂度[J]. 电子与信息学报, 2021, 43(8): 2149-2155. doi: 10.11999/JEIT200676
Jinling WANG, Jingjing CUI. The Period and the Linear Complexity of a New Self-shrinking Control Sequence on GF(3)[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2149-2155. doi: 10.11999/JEIT200676
Citation: Jinling WANG, Jingjing CUI. The Period and the Linear Complexity of a New Self-shrinking Control Sequence on GF(3)[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2149-2155. doi: 10.11999/JEIT200676

GF(3)上新型自缩控序列的周期与线性复杂度

doi: 10.11999/JEIT200676
基金项目: 国家自然科学基金 (61772476)
详细信息
    作者简介:

    王锦玲:女,1963年生,教授,硕士生导师,研究方向为代数学、密码学

    崔静静:女,1995年生,硕士生,研究方向为代数学、密码学

    通讯作者:

    崔静静 17335569258@163.com

  • 中图分类号: TN918.1

The Period and the Linear Complexity of a New Self-shrinking Control Sequence on GF(3)

Funds: The National Natural Science Foundation of China (61772476)
  • 摘要: 自缩控(SSC)序列是一类重要的伪随机序列,而伪随机序列在通信加密、编码技术等很多领域中有着广泛的应用。在这些应用中,通常要求序列具有大周期和高的线性复杂度。为了构造出周期更大、线性复杂度更高的伪随机序列,该文基于${\rm{GF}}(3)$上的$m$-序列构造了一种新型自缩控序列模型,利用有限域理论研究了生成序列的周期和线性复杂度,得到的生成序列周期和线性复杂度大大提高,且得到生成序列线性复杂度更精确的一个上界值,从而提高了生成序列在通信加密中的防攻击能力和安全性能。
  • [1] 杜小妮, 李丽, 张福军. 基于模2p m的欧拉商的二元序列的线性复杂度[J]. 电子与信息学报, 2019, 41(12): 3000–3005. doi: 10.11999/JEIT190071

    DU Xiaoni, LI Li, and ZHANG Fujun. Linear complexity of binary sequences derived from euler quotients modulo 2p m[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3000–3005. doi: 10.11999/JEIT190071
    [2] 王艳, 薛改娜, 李顺波, 等. 一类新的周期为2p mq阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2019, 41(9): 2151–2155. doi: 10.11999/JEIT180884

    WANG Yan, XUE Gaina, LI Shunbo, et al. The linear complexity of a new class of generalized cyclotomic sequence of order q with period 2p m[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2151–2155. doi: 10.11999/JEIT180884
    [3] YANG Bo, DU Tianqi, and XIAO Zibi. Linear complexity of generalized cyclotomic binary sequences of period pq[J]. Journal.of Mathematics, 2020, 40(2): 139–148. doi: 10.13548/j.sxzz.2020.02.004
    [4] 李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751

    LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequence with period 2pq[J]. Journal of Electronics &Information Technology, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751
    [5] 杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189

    DU Xiaoni, ZHAO Liping, and WANG Lianhua. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo 2p2[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189
    [6] 仲燕, 张胜元, 柯品惠. 一类新的周期为2p m的四元广义分圆序列的线性复杂度研究[J]. 福建师范大学学报: 自然科学版, 2020, 36(1): 7–11. doi: 10.12046/j.issn.1000-5277.2020.01.002

    ZHONG Yan, ZHANG Shengyuan, and KE Pinhui. Research on linear complexity of a new class of quaternary generalized cyclotomic sequence with period 2p m[J]. Journal of Fujian Normal University:Natural Science Edition, 2020, 36(1): 7–11. doi: 10.12046/j.issn.1000-5277.2020.01.002
    [7] 陈智雄, 吴晨煌. 关于二元割圆序列的k-错线性复杂度[J]. 通信学报, 2019, 40(2): 197–206. doi: 10.11959/j.issn.1000-436x.2019034

    CHEN Zhixiong and WU Chenhuang. k-error linear complexity of binary cyclotomic generators[J]. Journal on Communications, 2019, 40(2): 197–206. doi: 10.11959/j.issn.1000-436x.2019034
    [8] 刘龙飞, 杨晓元, 陈海滨. 周期为p m的广义割圆序列的 $ \frac{{p - 1}}{2}$ -错线性复杂度[J]. 电子与信息学报, 2013, 35(1): 191–195. doi: 10.3724/SP.J.1146.2012.00837

    LIU Longfei, YANG Xiaoyuan, and CHEN Haibin. On the $ \dfrac{{p - 1}}{2}$-error linear complexity of generalized cyclotomic sequence with length p m[J]. Journal of Electronics &Information Technology, 2013, 35(1): 191–195. doi: 10.3724/SP.J.1146.2012.00837
    [9] 吴晨煌, 许春香, 杜小妮. 周期为p2q元序列的k-错线性复杂度[J]. 通信学报, 2019, 40(12): 21–28. doi: 10.11959/j.issn.1000-436x.2019230

    WU Chenhuang, XU Chunxiang, and Du Xiaoni. k-error linear complexity of q-ary sequence of period p2[J]. Journal on Communications, 2019, 40(12): 21–28. doi: 10.11959/j.issn.1000-436x.2019230
    [10] 陈智雄, 牛志华, 吴晨煌. 周期为素数平方的二元序列的k-错线性复杂度[J]. 密码学报, 2019, 6(5): 574–584. doi: 10.13868/j.cnki.jcr.000323

    CHEN Zhixiong, NIU Zhihua, and WU Chenhuang. On k-error linear complexity of prime-square periodic binary sequences[J]. Journal of Cryptologic Research, 2019, 6(5): 574–584. doi: 10.13868/j.cnki.jcr.000323
    [11] MEIER W and STAFFELBACH O. The self-shrinking generator[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Perugia, Italy, 1994: 205–214.
    [12] BLACKBURN S R. The linear complexity of the self-shrinking generator[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2073–2077. doi: 10.1109/18.782139
    [13] KANSO A. Modified self-shrinking generator[J]. Computers and Electrical Engineering, 2010, 36(5): 993–1001. doi: 10.1016/j.compeleceng.2010.02.004
    [14] 王锦玲, 邹慧仙. 关于m-序列模加实现的自缩序列[J]. 计算机工程与应用, 2015, 51(19): 110–113. doi: 10.3778/j.issn.1002-8331.1310-0089

    WANG Jinling and ZOU Huixian. Self-shrinking sequence with modular addition on m-sequence[J]. Computer Engineering and Applications, 2015, 51(19): 110–113. doi: 10.3778/j.issn.1002-8331.1310-0089
    [15] 王锦玲, 王娟, 陈忠宝. GF(3)上多位自收缩序列的模型与研究[M]. 何大可, 黄月江. 密码学进展——China Cypt’2007: 中国密码学会2007年会论文集. 成都: 西南交通大学出版社, 2007: 299–300.

    WANG Jinling, WANG Juan, and CHEN Zhongbao. The model and studying of multi-self-shrinking sequences on GF(3)[M]. HE D K, HUANG Y J. Progress on Cryptography——China Cypt’2007: Proceedings of 2007 Annual Meeting of Chinese Cryptology Society. Chengdu: Southwest Jiaotong University Press, 2007: 299–300.
    [16] 王锦玲, 陈亚华, 兰娟丽. 扩展在上GF(3)新型自缩序列模型及研究[J]. 计算机工程与应用, 2009, 45(35): 114–119. doi: 10.3778/j.issn.1002-8331.2009.35.035

    WANG Jinling, CHEN Yahua, and LAN Juanli. New model and studying of self-shrinking sequence developed on GF(3)[J]. Computer Engineering and Applications, 2009, 45(35): 114–119. doi: 10.3778/j.issn.1002-8331.2009.35.035
    [17] 胡予璞, 张玉清, 肖国镇. 对称密码学[M]. 北京: 机械工业出版社, 2002: 66–74.

    HU Y P, ZHANG Y Q, XIAO G Z. Symmetric Key Cryptography[M]. Beijing: Machinery Industry Press, 2002: 66–74.
    [18] 王慧娟, 王锦玲. GF(q)上广义自缩序列的线性复杂度[J]. 电子学报, 2011, 39(2): 414–418.

    WANG Huijuan and WANG Jinling. The linear complexity of the generalized self-shrinking generator on GF(q)[J]. Acta Electronica Sinica, 2011, 39(2): 414–418.
    [19] LIDL R and NIEDERREITER H. Finite Fields[M]. Reading, US: Addison-Wesley Publishing Company, 1983: 271–272.
  • 加载中
计量
  • 文章访问数:  1644
  • HTML全文浏览量:  590
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-21
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回