高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的水声正交频分复用稀疏信道时延估计算法

强夕竹 乔钢 周锋

强夕竹, 乔钢, 周锋. 一种改进的水声正交频分复用稀疏信道时延估计算法[J]. 电子与信息学报, 2021, 43(3): 817-825. doi: 10.11999/JEIT200660
引用本文: 强夕竹, 乔钢, 周锋. 一种改进的水声正交频分复用稀疏信道时延估计算法[J]. 电子与信息学报, 2021, 43(3): 817-825. doi: 10.11999/JEIT200660
Xizhu QIANG, Gang QIAO, Feng ZHOU. An Improved Delay Estimation Algorithm for Underwater Acoustic OFDM Sparse Channel[J]. Journal of Electronics & Information Technology, 2021, 43(3): 817-825. doi: 10.11999/JEIT200660
Citation: Xizhu QIANG, Gang QIAO, Feng ZHOU. An Improved Delay Estimation Algorithm for Underwater Acoustic OFDM Sparse Channel[J]. Journal of Electronics & Information Technology, 2021, 43(3): 817-825. doi: 10.11999/JEIT200660

一种改进的水声正交频分复用稀疏信道时延估计算法

doi: 10.11999/JEIT200660
基金项目: 国家自然科学基金(61771152, 11774074)
详细信息
    作者简介:

    强夕竹:女,1993年生,博士生,研究方向为水声通信

    乔钢:男,1974年生,教授,研究方向为水声通信

    周锋:男,1980年生,教授,研究方向为水声通信

    通讯作者:

    周锋 zhoufeng@hrbeu.edu.cn

  • 中图分类号: TN929.3

An Improved Delay Estimation Algorithm for Underwater Acoustic OFDM Sparse Channel

Funds: The National Natural Science Foundation of China (61771152, 11774074)
  • 摘要: 水声正交频分复用(OFDM)系统中,采用传统正交匹配追踪(OMP)方法估计离网格(off-grid)时延时,需要很高的过采样因子和高昂的计算开销。针对传统OMP方法估计离网格时延计算复杂度高的问题,该文借鉴多元线性拟合思想引入路径补偿的概念,提出了一种基于路径补偿的改进OMP时延估计算法,用以补偿从离网格路径向其周围网格位置泄漏的能量,并用补偿距离这一参数来解释路径补偿效果。该算法无需增加过采样因子,仅利用恰当的补偿距离即可实现较好的估计效果,且能在提高估计性能的同时降低计算复杂度。仿真分析与海试结果验证了该方法的优越性。
  • 图  1  补偿距离与拟合效果的关系

    图  2  路径补偿示意图

    图  3  算法流程图

    图  4  单径信道32 dB下的MSE

    图  5  单径信道0 dB下的MSE

    图  6  时延间隔均值为1 ms的多径信道MSE

    图  7  时延间隔均值为0.2 ms的多径信道MSE

    图  8  各阵列平均信道冲激响应

    表  1  内积计算复杂度定性对比

    实数乘法实数加法
    OMP-grid-comp$L \cdot 2\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$$L \cdot 3\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$
    OMP-normal-comp$2L \cdot 2\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$$2L \cdot 3\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$
    OMP-sin$2L \cdot 2\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$$2L \cdot 3\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$
    SdMP$L \cdot 2\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$$L \cdot 3\lambda {N_{\rm{P}}}{\log _2}\lambda {N_{\rm{P}}}$
    下载: 导出CSV

    表  2  内积计算复杂度定量对比

    实数乘法实数加法
    OMP-grid-comp($\lambda = 4$)102400153600
    OMP-normal-comp($\lambda = 4$)204800307200
    OMP-sin($\lambda = 4$)204800307200
    SdMP($\lambda = 4$)102400153600
    下载: 导出CSV

    表  3  不同信道估计方法的原始误码率

    误码率阵列1阵列2阵列3阵列4阵列5
    本文方法最大值0.05680.06820.04830.07100.0284
    平均值0.00450.01200.00490.00580.0070
    OMP-2grid-comp最大值0.06250.06820.04830.07390.0369
    平均值0.00570.01280.00630.00650.0079
    OMP-sin最大值0.05970.08240.05400.07670.0313
    平均值0.00530.01460.00620.00770.0080
    SdMP最大值0.05680.07100.05970.07950.0426
    平均值0.00530.01270.00720.00820.0079
    OMP-normal-comp-8最大值0.05680.07950.05970.08240.0426
    平均值0.00540.01590.00670.00840.0100
    下载: 导出CSV
  • COATELAN S and GLAVIEUX A. Design and test of a multicarrier transmission system on the shallow water acoustic channel[C]. OCEANS’94, Brest, France, 1994: 472–477. doi: 10.1109/oceans.1994.364244.
    ZHENG Beixiong and ZHANG Rui. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518–522. doi: 10.1109/LWC.2019.2961357
    张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法[J]. 电子与信息学报, 2020, 42(2): 534–540. doi: 10.11999/JEIT190102

    ZHANG Ying and YAO Yufeng. Channel estimation algorithm of maritime sparse channel based on fast Bayesian matching pursuit optimization[J]. Journal of Electronics &Information Technology, 2020, 42(2): 534–540. doi: 10.11999/JEIT190102
    BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708–1721. doi: 10.1109/tsp.2009.2038424
    GÓMEZ-CUBA F and GOLDSMITH A J. Compressed sensing channel estimation for OFDM with Non-Gaussian multipath gains[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 47–61. doi: 10.1109/TWC.2019.2941192
    WANG Shuche, HE Zhiqiang, NIU Kai, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2601–2612. doi: 10.1109/TWC.2020.2966622
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/tit.2007.909108
    QIAO Gang, SONG Qingjun, MA Lu, et al. A low-complexity orthogonal matching pursuit based channel estimation method for time-varying underwater acoustic OFDM systems[J]. Applied Acoustics, 2019, 148: 246–250. doi: 10.1016/j.apacoust.2018.12.026
    CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650
    TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255–271. doi: 10.1109/jstsp.2010.2042410
    BERGER C R, WANG Zhaohui, HUANG Jianzhong, et al. Application of compressive sensing to sparse channel estimation[J]. IEEE Communications Magazine, 2010, 48(11): 164–174. doi: 10.1109/MCOM.2010.5621984
    PANAYIRCI E, ALTABBAA M T, UYSAL M, et al. Sparse channel estimation for OFDM-based underwater acoustic systems in Rician fading with a new OMP-MAP algorithm[J]. IEEE Transactions on Signal Processing, 2019, 67(6): 1550–1565. doi: 10.1109/tsp.2019.2893841
    ZENG Wenjun, JIANG Xue, LI Xilin, et al. Deconvolution of sparse underwater acoustic multipath channel with a large time-delay spread[J]. The Journal of the Acoustical Society of America, 2010, 127(2): 909–919. doi: 10.1121/1.3278604
    QIAO Gang, SONG Qingjun, MA Lu, et al. Sparse Bayesian learning for channel estimation in time-varying underwater acoustic OFDM communication[J]. IEEE Access, 2018, 6: 56675–56684. doi: 10.1109/access.2018.2873406
    UWAECHIA A N and MAHYUDDIN N M. Stage-determined matching pursuit for sparse channel estimation in OFDM systems[J]. IEEE Systems Journal, 2019, 13(3): 2240–2251. doi: 10.1109/JSYST.2018.2837353
    WAN Lei, QIANG Xizhu, MA Lu, et al. Accurate and efficient path delay estimation in OMP based sparse channel estimation for OFDM with equispaced pilots[J]. IEEE Wireless Communications Letters, 2019, 8(1): 117–120. doi: 10.1109/LWC.2018.2860996
    DRAPER N R and SMITH H. Applied Regression Analysis[M]. 3rd ed. New York: John Wiley & Sons, 1998: 115–134. doi: 10.1002/9781118625590.
    QIAO Gang, QIANG Xizhu, WAN Lei, et al. Chirp Z-transform based sparse channel estimation for underwater acoustic OFDM in clustered channels[C]. The OCEANS 2018 MTS/IEEE Charleston, Charleston, USA, 2018: 1–6. doi: 10.1109/oceans.2018.8604692.
    WAN Lei, JIA Hanbo, ZHOU Feng, et al. Fine Doppler scale estimations for an underwater acoustic CP-OFDM system[J]. Signal Processing, 2020, 170: 107439. doi: 10.1016/j.sigpro.2019.107439
    KALBAT F, Al-DWEIK A, SHARIF B, et al. Performance analysis of precoded wireless OFDM with carrier frequency offset[J]. IEEE Systems Journal, 2020, 14(2): 2237–2248. doi: 10.1109/JSYST.2019.2922098
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  190
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-02-06
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回