高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Khatri-Rao积的三维前视声呐空间方位估计技术

周天 沈嘉俊 杜伟东 周曹韵 宋金阳 陈宝伟 李海森

周天, 沈嘉俊, 杜伟东, 周曹韵, 宋金阳, 陈宝伟, 李海森. 基于Khatri-Rao积的三维前视声呐空间方位估计技术[J]. 电子与信息学报, 2021, 43(3): 857-864. doi: 10.11999/JEIT200657
引用本文: 周天, 沈嘉俊, 杜伟东, 周曹韵, 宋金阳, 陈宝伟, 李海森. 基于Khatri-Rao积的三维前视声呐空间方位估计技术[J]. 电子与信息学报, 2021, 43(3): 857-864. doi: 10.11999/JEIT200657
Tian ZHOU, Jiajun SHEN, Weidong DU, Caoyun ZHOU, Jinyang SONG, Baowei CHEN, Haisen LI. DOA Estimation Technology Based on Khatri-Rao Product for 3D Forward-looking Sonar[J]. Journal of Electronics & Information Technology, 2021, 43(3): 857-864. doi: 10.11999/JEIT200657
Citation: Tian ZHOU, Jiajun SHEN, Weidong DU, Caoyun ZHOU, Jinyang SONG, Baowei CHEN, Haisen LI. DOA Estimation Technology Based on Khatri-Rao Product for 3D Forward-looking Sonar[J]. Journal of Electronics & Information Technology, 2021, 43(3): 857-864. doi: 10.11999/JEIT200657

基于Khatri-Rao积的三维前视声呐空间方位估计技术

doi: 10.11999/JEIT200657
基金项目: 后勤科研重点项目(BY119C008),国家自然科学基金(U1709203, 41976176, U1906218),中央高校基本业务费(3072020CFT0501),黑龙江省博士后科研发展基金(LBH-Q18042),黑龙江省自然科学基金(ZD2020D001)
详细信息
    作者简介:

    周天:男,1980年生,教授,研究方向为水声信号处理、水声目标探测

    沈嘉俊:男,1993年生,博士生,研究方向为水声阵列信号处理

    杜伟东:男,1984年生,讲师,研究方向为水声信号处理

    通讯作者:

    杜伟东 duweidong@hrbeu.edu.cn

  • 中图分类号: TB566

DOA Estimation Technology Based on Khatri-Rao Product for 3D Forward-looking Sonar

Funds: The Logistics Study Program(BY119C008), The National Natural Science Foundation of China (U1709203, 41976176, U1906218), The Fundamental Research Funds for the Central Universities(3072020CFT0501), The Postdoctoral Scientific Research Developmental Fund of Heilongjiang(LBH-Q18042), The Natural Science Foundation of Heilongjiang Province(ZD2020D001)
  • 摘要: 为了提高3维前视声呐的方位分辨能力,同时避免2维(2D)方位估计(DOA)方法失效,该文提出1维(1D)空间角估计方法、基于Vernier法的垂直角估计方法和基于最小角定理的水平角方位估计方法。首先基于不同子阵构造互协方差矩阵避免2维方位估计模型失效,再利用Khatri-Rao积进行虚拟孔径扩展;将扩展后的阵列导向矢量和观测向量模型用于2维方位估计。与原阵列的导向矢量相比,虚拟阵元数量约增加1倍,阵列的孔径得到有效扩展。仿真实验表明,与单观测向量波束形成2维方位估计方法相比,所提方法在2维方位估计问题中具有更高的分辨能力,均方根误差更低;水池实验进一步验证了该文所提方法的工程实用性。
  • 图  1  2维稀疏接收阵列

    图  2  3维笛卡尔坐标系下的目标方位表述

    图  3  导向波束的3维波束图案

    图  4  目标1(水平角90°垂直角–7°)仿真估计结果误差棒图

    图  5  目标2(水平角92°垂直角–5°)仿真估计结果误差棒图

    图  6  仿真实验输出波束图案

    图  7  水池实验场景示意图

    图  8  波束形成输出声图像

    图  9  某一快拍下的波束图案输出

    图  10  2维方位估计结果

  • HENLEY H and ZIMMERMAN M J. Performance of 3D forward looking sonar for bathymetric survey[C]. OCEANS 2017-Anchorage, Anchorage, USA, 2017: 1–9.
    RUSSEL I and WRIGHT R G. Navigation SONAR: More than underwater radar realizing the full potential of navigation and obstacle avoidance sonar[J]. International Hydrographic Review, 2017: 41–60.
    ZIMMERMAN M J and HENLEY H. Applications of today’s 3D forward looking sonar for real-time navigation and bathymetric survey[C]. OCEANS 2017-Anchorage, Anchorage, USA, 2017: 1–7.
    Tritech International Ltd. Eclipse 3D imaging sonar product manual[EB/OL]. https://www.tritech.co.uk/media/support/manuals/eclipse-multibeam-sonar-operator-installation-manual0.pdf, 2020.
    Coda Octopus Products Ltd. Echoscope 4G datasheet[EB/OL]. https://d1io3yog0oux5.cloudfron.net/_d5c808f4da6c3542e43d3cef98f952d3/codaoctopus/db/443/2846/brochure/Echoscope+4G+Datasheet+1.1.1.20.pdf, 2020.
    Teledyne RESON. SeaBat® F30[EB/OL]. https://www.bluezonegroup.com.au/_literature_165599/SeaBat_F30_Product_Leaflet, 2020.
    陈建, 王树勋. 基于高阶累积量虚拟阵列扩展的DOA估计[J]. 电子与信息学报, 2007, 29(5): 1041–1044.

    CHEN Jian and WANG Shuxun. DOA estimation of virtual array extension based on fourth-order cumulant[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1041–1044.
    杨永晶, 俞志富. 基于虚拟阵列扩展的DOA估计[J]. 电子信息对抗技术, 2014, 29(5): 32–35, 39. doi: 10.3969/j.issn.1674-2230.2014.05.008

    YANG Yongjing and YU Zhifu. DOA estimation based on virtual array extension[J]. Electronic Information Warfare Technology, 2014, 29(5): 32–35, 39. doi: 10.3969/j.issn.1674-2230.2014.05.008
    韩佳辉, 毕大平, 陈璐. 基于虚拟孔径扩展的非均匀稀疏阵DOA估计[J]. 电光与控制, 2018, 25(3): 28–31. doi: 10.3969/j.issn.1671-637X.2018.03.007

    HAN Jiahui, BI Daping, and CHEN Lu. Non-uniform sparse array DOA estimation based on virtual aperture expansion[J]. Electronics Optics &Control, 2018, 25(3): 28–31. doi: 10.3969/j.issn.1671-637X.2018.03.007
    谭伟杰, 冯西安, 张杨梅. 阵元失效下基于Khatri-Rao积的高分辨测向方法[J]. 太赫兹科学与电子信息学报, 2017, 15(1): 47–53. doi: 10.11805/TKYDA201701.0047

    TAN Weijie, FENG Xi’an, and ZHANG Yangmei. High-resolution DOA estimation method based on Khatri-Rao product in presence of element failure[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 47–53. doi: 10.11805/TKYDA201701.0047
    刘志刚, 汪晋宽, 王福利. 虚拟空间平滑算法[J]. 电子学报, 2007, 35(9): 1762–1765. doi: 10.3321/j.issn:0372-2112.2007.09.030

    LIU Zhigang, WANG Jinkuan, and WANG Fuli. Virtual spatial smoothing algorithm[J]. Acta Electronica Sinica, 2007, 35(9): 1762–1765. doi: 10.3321/j.issn:0372-2112.2007.09.030
    孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041

    SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
    YUFIT G and MAILLARD E P. 3D forward looking sonar technology for surface ships and AUV: Example of design and bathymetry application[C]. 2013 IEEE International Underwater Technology Symposium, Tokyo, Japan, 2013: 1–5.
    周天, 沈嘉俊, 陈宝伟, 等. 应用二维稀疏阵列的三维前视声呐方位估计[J]. 哈尔滨工程大学学报, 2020, 41(10): 1450–1456. doi: 10.11990/jheu.202007031

    ZHOU Tian, SHEN Jiajun, Chen Baowei, et al. Direction-of-arrival estimation of three-dimensional forward-looking sonar with two-dimensional sparse array[J]. Journal of Harbin Engineering University, 2020, 41(10): 1450–1456. doi: 10.11990/jheu.202007031
    姚永红, 周天, 李海森, 等. 基于新型阵列结构的多波束SAS逐点成像算法研究[J]. 电子与信息学报, 2011, 33(4): 838–843. doi: 10.3724/SP.J.1146.2010.00730

    YAO Yonghong, ZHOU Tian, LI Haisen, et al. Research on the dot-by-dot imaging algorithm for multi-beam SAS based on a new array configuration[J]. Journal of Electronics &Information Technology, 2011, 33(4): 838–843. doi: 10.3724/SP.J.1146.2010.00730
    王俊, 向洪, 魏少明, 等. 单快拍数据的分布式二维阵列测角方法研究[J]. 电子与信息学报, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856

    WANG Jun, XIANG Hong, WEI Shaoming, et al. 2-D DOA estimation of distributed array with single snapshot[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856
    LLORT-PUJOL G, SINTES C, and GUERIOT D. Analysis of Vernier interferometers for sonar bathymetry[C]. OCEANS 2008, Quebec City, Canada, 2008: 1–5.
    BURDIC W S. Underwater Acoustic System Analysis[M]. 2nd ed. Los Altos Hills: Peninsula, 2002: 317–320.
    SINTES C, FOOTE K G, LLORT-PUJOL G, et al. Relationships among Vernier-method and other direction-of-arrival estimators[C]. OCEANS 2015, Genoa, Italy, 2015: 1–6.
  • 加载中
图(10)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  319
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-02-22
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回