高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

解卷积主动声呐目标回波高分辨时延估计技术

苍思远 生雪莉 董航 郭龙祥

苍思远, 生雪莉, 董航, 郭龙祥. 解卷积主动声呐目标回波高分辨时延估计技术[J]. 电子与信息学报, 2021, 43(3): 842-849. doi: 10.11999/JEIT200649
引用本文: 苍思远, 生雪莉, 董航, 郭龙祥. 解卷积主动声呐目标回波高分辨时延估计技术[J]. 电子与信息学报, 2021, 43(3): 842-849. doi: 10.11999/JEIT200649
Siyuan CANG, Xueli SHENG, Hang DONG, Longxiang GUO. Deconvolution-based Target Echo High-resolution Time Delay Estimation Technique Using Active Sonar[J]. Journal of Electronics & Information Technology, 2021, 43(3): 842-849. doi: 10.11999/JEIT200649
Citation: Siyuan CANG, Xueli SHENG, Hang DONG, Longxiang GUO. Deconvolution-based Target Echo High-resolution Time Delay Estimation Technique Using Active Sonar[J]. Journal of Electronics & Information Technology, 2021, 43(3): 842-849. doi: 10.11999/JEIT200649

解卷积主动声呐目标回波高分辨时延估计技术

doi: 10.11999/JEIT200649
基金项目: 国家自然科学基金(51979061, 51779061),国家重点研发计划(2018YFC1405902)
详细信息
    作者简介:

    苍思远:男,1991年生,博士生,研究方向为水声信号处理、稀疏表示及凸优化理论

    生雪莉:女,1977年生,教授,博士生导师,研究方向为水声信号处理、多平台及仿生声呐技术

    董航:男,1996年生,硕士生,研究方向为水声目标探测、时延估计

    郭龙祥:男,1976年生,教授,研究方向为水声目标探测与定位

    通讯作者:

    生雪莉 shengxueli@hrbeu.edu.cn

  • 中图分类号: TB566

Deconvolution-based Target Echo High-resolution Time Delay Estimation Technique Using Active Sonar

Funds: The National Natural Science Foundation of China (51979061, 51779061), The National Key R&D Program of China (2018YFC1405902)
  • 摘要: 为提高浅海复杂海洋环境下的目标回波时延估计精度,增强主动声呐系统对目标的探测能力,该文基于稀疏表示理论和解卷积思想,提出一种高分辨目标回波时延估计技术。首先,引入Toeplitz算子,将发射信号的不同时延结果构造成时延字典矩阵,时延估计值存在于所求解的稀疏向量中。其次,利用交替方向乘子算法(ADMM)优化框架,求解全局最优解。最后,采用一种加权迭代策略设置正则化参数,进一步抑制多途信道的影响,解耦合出回波到达的时刻,获得高精度的目标回波时延估计结果。数值仿真和实验数据表明,该文提出的解卷积主动声呐目标回波高分辨时延估计技术可以在多途扩展严重的浅海声信道实现目标探测,在信道水池的实验环境下,时延估计分辨率可达0.056 ms。
  • 图  1  主动声呐探测目标仿真态势图及声速剖面

    图  2  单程信道冲激响应和广义信道冲激响应

    图  3  发射信号为线性调频信号,目标回波时延估计结果

    图  4  发射信号为正弦信号,目标回波时延估计结果

    图  5  不同信噪比下时延估计的RMSE曲线

    图  6  信道水池实验态势图

    图  7  信道水池实验数据时延估计结果

    表  1  解卷积时延估计方法流程

     输入:接收信号$r$,主动声呐发射信号$s$,正则化系数初值${\lambda ^0}$
     输出:广义信道冲激响应的估计值${\hat{ H}}$
     (1) 利用主动声呐发射信号$s$和式(10)构造字典矩阵${{T}}(s)$;
     (2) 令${\hat{ H}}$为零向量,利用式(23)得到首次迭代时的正则化系数${\lambda ^1}$;
     (3) 利用式(20)求解ADMM算法中的第1个变量${{x}}$;
     (4) 利用式(22)求解ADMM算法中的第2个变量${{z}}$,也就是${\hat{ H}}$;
     (5) 利用式(19)求解ADMM算法中的第3个变量${{u}}$;
     (6) 将得到的${\hat{ H}}$代入到式(23)中,得到下一次迭代时的正则化系数${\lambda ^\ell }$;
     (7) 重复步骤3—步骤6,直至达到ADMM算法的迭代停止条件。
    下载: 导出CSV

    表  2  发射信号为线性调频信号,时延估计分辨率(SNR=5 dB)

    匹配滤波解卷积时延估计
    –3 dB主瓣宽度所占据的平均采样点数8.2301.000
    时延估计分辨率(ms)0.5140.063
    下载: 导出CSV

    表  3  发射信号为正弦信号,时延估计分辨率(SNR=5 dB)

    匹配滤波解卷积时延估计
    –3 dB主瓣宽度所占据的平均采样点数589.5001.000
    时延估计分辨率(ms)36.3000.063
    下载: 导出CSV
  • HAGUE D A and BUCK J R. An experimental evaluation of the generalized sinusoidal frequency modulated waveform for active sonar systems[J]. The Journal of the Acoustical Society of America, 2019, 145(6): 3741–3755. doi: 10.1121/1.5113581
    YIN Jingwei, MEN Wei, HAN Xiao, et al. Integrated waveform for continuous active sonar detection and communication[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1382–1390. doi: 10.1049/iet-rsn.2020.0099
    ZHANG Ting, YANG T C, and XU Wen. Bistatic localization of objects in very shallow water[J]. IEEE Access, 2019, 7: 180640–180651. doi: 10.1109/ACCESS.2019.2947851
    YANG T C. Deconvolved conventional beamforming for a horizontal line array[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 160–172. doi: 10.1109/JOE.2017.2680818
    MA Lin, GULLIVER T A, ZHAO Anbang, et al. Underwater broadband source detection using an acoustic vector sensor with an adaptive passive matched filter[J]. Applied Acoustics, 2019, 148: 162–174. doi: 10.1016/j.apacoust.2018.12.023
    HAMA Y and OCHIAI H. Performance analysis of matched-filter detector for MIMO spatial multiplexing over rayleigh fading channels with imperfect channel estimation[J]. IEEE Transactions on Communications, 2019, 67(5): 3220–3233. doi: 10.1109/TCOMM.2019.2892758
    PADOIS T, DOUTRES O, and SGARD F. On the use of modified phase transform weighting functions for acoustic imaging with the generalized cross correlation[J]. The Journal of the Acoustical Society of America, 2019, 145(3): 1546–1555. doi: 10.1121/1.5094419
    CHANDRAN V, ELGAR S, and NGUYEN A. Detection of mines in acoustic images using higher order spectral features[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 610–618. doi: 10.1109/JOE.2002.1040943
    BENESTY J, CHEN Jingdong, and HUANG Yiteng. Time-delay estimation via linear interpolation and cross correlation[J]. IEEE Transactions on Speech and Audio Processing, 2004, 12(5): 509–519. doi: 10.1109/TSA.2004.833008
    SALVATI D and CANAZZA S. Adaptive time delay estimation using filter length constraints for source localization in reverberant acoustic environments[J]. IEEE Signal Processing Letters, 2013, 20(5): 507–510. doi: 10.1109/LSP.2013.2253319
    SHAO Zhenfeng, WANG Lei, WANG Zhongyuan, et al. Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2663–2674. doi: 10.1109/JSTARS.2019.2925456
    崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法[J]. 电子与信息学报, 2019, 41(10): 2318–2324. doi: 10.11999/JEIT181181

    CUI Weijia, ZHANG Peng, and BA Bin. Sparse reconstruction OFDM delay estimation algorithm based on Bayesian automatic relevance determination[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2318–2324. doi: 10.11999/JEIT181181
    王洪雁, 于若男. 基于稀疏和低秩恢复的稳健DOA估计方法[J]. 电子与信息学报, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263

    WANG Hongyan and YU Ruonan. Sparse and low rank recovery based robust DOA estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263
    MENG Xiangxia, LI Xiukun, JAKOBSSON A, et al. Sparse estimation of backscattered echoes from underwater object using integrated dictionaries[J]. The Journal of the Acoustical Society of America, 2018, 144(6): 3475–3484. doi: 10.1121/1.5083830
    XIA Zhi, LI Xiukun, and MENG Xiangxia. High resolution time-delay estimation of underwater target geometric scattering[J]. Applied Acoustics, 2016, 114: 111–117. doi: 10.1016/j.apacoust.2016.07.016
    HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862–5875. doi: 10.1109/TIT.2010.2070191
    TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological) , 1996, 58(1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
    GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.1[OL]. http://cvxr.com/, 2014.
    BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[M]. Boston: Now Publishers Inc., 2011. doi: 10.1561/2200000016.
    CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877–905. doi: 10.1007/s00041-008-9045-x
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  258
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2021-02-06
  • 网络出版日期:  2021-02-19
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回