高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声通信中一种新型无前后缀的单载波频域均衡技术

涂星滨 肖芳贵 许肖梅

涂星滨, 肖芳贵, 许肖梅. 水声通信中一种新型无前后缀的单载波频域均衡技术[J]. 电子与信息学报, 2021, 43(3): 758-766. doi: 10.11999/JEIT200611
引用本文: 涂星滨, 肖芳贵, 许肖梅. 水声通信中一种新型无前后缀的单载波频域均衡技术[J]. 电子与信息学报, 2021, 43(3): 758-766. doi: 10.11999/JEIT200611
Xingbin TU, Fanggui XIAO, Xiaomei XU. A Novel Single-Carrier Frequency-Domain Equalization Technique without Prefix or Suffix for Underwater Acoustic Communications[J]. Journal of Electronics & Information Technology, 2021, 43(3): 758-766. doi: 10.11999/JEIT200611
Citation: Xingbin TU, Fanggui XIAO, Xiaomei XU. A Novel Single-Carrier Frequency-Domain Equalization Technique without Prefix or Suffix for Underwater Acoustic Communications[J]. Journal of Electronics & Information Technology, 2021, 43(3): 758-766. doi: 10.11999/JEIT200611

水声通信中一种新型无前后缀的单载波频域均衡技术

doi: 10.11999/JEIT200611
基金项目: 国家自然科学基金(41976178, 41676024)
详细信息
    作者简介:

    涂星滨:男,1989年生,博士生,研究方向为水声通信与信号处理

    肖芳贵:男,1995年生,硕士生,研究方向为水声通信与信号处理

    许肖梅:女,1960年生,博士,教授,研究方向为水声遥测遥控、水声通信、水声网络

    通讯作者:

    许肖梅 xmxu@xmu.edu.cn

  • 中图分类号: TN929.3

A Novel Single-Carrier Frequency-Domain Equalization Technique without Prefix or Suffix for Underwater Acoustic Communications

Funds: The National Natural Science Foundation of China (41976178, 41676024)
  • 摘要: 单载波频域均衡(SC-FDE)是水声通信中实现高数据率传输的重要技术之一,但传输序列中周期性插入的循环前缀或保护间隔等前后缀降低了频带利用率和通信速率。该文在时间反转(TR)处理的基础上提出一种新型无前后缀的水声单载波频域均衡技术,即发射机传输无前后缀的单载波信号,接收机对各个数据块的后缀进行重构并利用频域均衡技术消除符号间干扰。重构数据块后缀作为接收机的核心部分,主要包括3个步骤:TR处理、干扰消除和后缀重构。首先,TR处理将来自接收阵元的多通道信号融合为单通道信号,并且其等效信道冲激响应(即q函数)的稳定主峰避免了后缀重构中的噪声放大。然后,通过干扰消除,去除来自前一数据块的块间干扰(IBI)和来自当前数据块的反因果干扰(ACI)。最后,根据q函数主峰及其右侧的因果部分计算信号的各个路径分量,实现数据块的后缀重构。实验结果验证了这一技术的有效性,并且性能优于现有无前后缀的单载波频域均衡技术。
  • 图  1  ACIC-FDE接收机的结构框图

    图  2  ψ次迭代过程中的数据块处理示意图

    图  3  仿真信道冲激响应及q函数

    图  4  不同接收信噪比下,ACIC-FDE的仿真结果

    图  5  不同接收信噪比下,FDE的仿真结果

    图  6  TR-FDE与ACIC-FDE接收机的仿真结果

    图  7  Conv-FDE与ACIC-FDE接收机的仿真结果(3次迭代)

    图  8  收发端之间的水声信道冲激响应(平均SNR=20.9 dB)

    图  9  3种接收信噪比下,Ch1和Ch3的多普勒频移和扩展

    图  10  水池实验解调结果

    表  1  几种频域均衡接收机在一个数据块内的计算复杂度

    步骤FDETR-FDEACIC-FDE
    复杂度范例值复杂度范例值复杂度范例值
    信道估计$\varPsi $MNL${\rm{7}}{\rm{.68}} \times {10^{\rm{5}}}$$\varPsi $MNL${\rm{7}}{\rm{.68}} \times {10^{\rm{5}}}$$\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {MN_{\rm{e}}^\psi L} $${\rm{8}}{\rm{.29}} \times {10^{\rm{5}}}$
    TR处理00$({3 / 2})\varPsi MN{\log _2}N$$7.78 \times {10^4}$$({3 / 2})\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {MN_{\rm{e}}^\psi } {\log _2}N_{\rm{e}}^\psi $$8.{\rm{51}} \times {10^4}$
    IBI消除00$({3 / 2})\varPsi {L_q}{\log _2}{L_q}$${\rm{2}}{\rm{.88}} \times {10^2}$$({3 / 2})\varPsi {L_q}{\log _2}{L_q}$${\rm{2}}{\rm{.88}} \times {10^2}$
    ACI消除0000$({3 / 2})\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {N_{\rm{e}}^\psi } {\log _2}N_{\rm{e}}^\psi $$1.7{\rm{0}} \times {10^4}$
    前后缀重构00$\varPsi N{L_q}$${\rm{1}}{\rm{.92}} \times {10^4}$$\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {\left( {N_{\rm{e}}^\psi - {L_q}} \right)} {L_q}$$2.{\rm{00}} \times {10^4}$
    均衡2$\varPsi $MN$1.20 \times {10^4}$2$\varPsi $N$2.40 \times {10^3}$$2\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {\left( {N_{\rm{e}}^\psi - {L_q}} \right)} $$2.5{\rm{0}} \times {10^3}$
    FFT/IFFT$ \varPsi \left( {MN + {N / 2}} \right) \times {\log _2}N $$5.70 \times {10^4}$$({3 / 2})\varPsi N{\log _2}N$$1.56 \times {10^4}$$\begin{array}{r} ({3 / 2})\displaystyle\sum\nolimits_{\psi {\rm{ = 1} } }^\varPsi {\left( {N_{\rm{e} }^\psi - {L_q} } \right)} \\ \times {\log _2}\left( {N_{\rm{e} }^\psi - {L_q} } \right)\end{array}$$1.6{\rm{3}} \times {10^4}$
    总计算量$O\left( {\varPsi MNL} \right)$${\rm{8}}{\rm{.3}}7 \times {10^{\rm{5}}}$$O\left( {\varPsi MNL} \right)$${\rm{8}}{\rm{.83}} \times {10^{\rm{5}}}$$O\left( {\displaystyle\sum\nolimits_{\psi {\rm{ = 1}}}^\varPsi {MN_{\rm{e}}^\psi } L} \right)$${\rm{9}}{\rm{.71}} \times {10^{\rm{5}}}$
    下载: 导出CSV

    表  2  信道模型参数与通信仿真参数

    信道模型参数数值通信仿真参数数值
    水深/传输距离20 m/1000 m调制方式QPSK
    海底起伏方差10–3符号速率16 ksym/s
    载波频率/带宽85 kHz/20 kHz过采样率/滚降系数3/0.25
    发射深度/接收深度13.4 m/9.5~17.0 m(5阵元,间隔约1.9 m)信道估计压缩采样匹配追踪(稀疏度15)
    声扩展因子1.0数据块时长25 ms(无重叠)
    仿真时长3.0 s迭代次数1, 2, 3
    下载: 导出CSV

    表  3  水池通信实验参数

    通信实验参数数值通信实验参数数值
    调制方式QPSK分数采样率4
    载波频率/带宽85.5 kHz/8 kHz数据块时长40 ms
    各功率下传输数据包数3信道估计压缩采样匹配追踪(稀疏度30)
    数据包时长6.0 s迭代次数5
    符号速率6.4 ksym/s接收机TR-FD-DFE, ACIC-FD-DFE
    下载: 导出CSV
  • STOJANOVIC M. Acoustic (Underwater) Communications[M]. PROAKIS J G. Wiley Encyclopedia of Telecommunications. New York: John Wiley & Sons, 2003: 36–47.
    SONG Aijun, STOJANOVIC M, and CHITRE M. Editorial underwater acoustic communications: Where we stand and what is next?[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 1–6. doi: 10.1109/JOE.2018.2883872
    ZHENG Y R, XIAO Chengshan, YANG T C, et al. Frequency-domain channel estimation and equalization for single carrier underwater acoustic communications[C]. OCEANS 2007, Vancouver, Canada, 2007: 1–6.
    ZHENG Y R, XIAO Chengshan, YANG T C, et al. Frequency-domain channel estimation and equalization for shallow-water acoustic communications[J]. Physical Communication, 2010, 3(1): 48–63. doi: 10.1016/j.phycom.2009.08.010
    BENVENUTO N, DINIS R, FALCONER D, et al. Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come–again[J]. Proceedings of the IEEE, 2010, 98(1): 69–96. doi: 10.1109/JPROC.2009.2031562
    WANG Longbao, TAO Jun, and ZHENG Y R. Single-carrier frequency-domain turbo equalization without cyclic prefix or zero padding for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2012, 132(6): 3809–3817. doi: 10.1121/1.4763987
    ZHENG Y R, WU Jingxian, and XIAO Chengshan. Turbo equalization for single-carrier underwater acoustic communications[J]. IEEE Communications Magazine, 2015, 53(11): 79–87. doi: 10.1109/MCOM.2015.7321975
    ZHANG Jian and ZHENG Y R. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2010, 128(5): 2910–2919. doi: 10.1121/1.3480569
    BOCQUET W, HAYASHI K, and SAKAI H. Systematic design of single carrier overlap frequency domain equalization[J]. Journal of Systems Science and Complexity, 2010, 23(1): 50–60. doi: 10.1007/s11424-010-9275-2
    TU Xingbin, SONG Aijun, and XU Xiaomei. Prefix-free frequency domain equalization for underwater acoustic single carrier transmissions[J]. IEEE Access, 2017, 6: 2578–2588. doi: 10.1109/ACCESS.2017.2784388
    TU Xingbin, SONG Aijun, and XU Xiaomei. Time reversal based frequency-domain equalization for underwater acoustic single-carrier transmissions[J]. The Journal of the Acoustical Society of America, 2018, 143(3): 1957–1958.
    BENVENUTO N and TOMASIN S. Iterative design and detection of a DFE in the frequency domain[J]. IEEE Transactions on Communications, 2005, 53(11): 1867–1875. doi: 10.1109/TCOMM.2005.858666
    MONTEZUMA P, SILVA F, and DINIS R. Frequency-Domain Receiver Design for Doubly Selective Channels[M]. Boca Raton: CRC Press, 2017: 56–62.
    HE Chengbing, HUO Siyu, ZHANG Qunfei, et al. Multi-channel iterative FDE for single carrier block transmission over underwater acoustic channels[J]. China Communications, 2015, 12(8): 55–61. doi: 10.1109/CC.2015.7224706
    景连友, 何成兵, 张玲玲, 等. 水声通信中基于软判决的块迭代判决反馈均衡器[J]. 电子与信息学报, 2016, 38(4): 885–891. doi: 10.11999/JEIT150669

    JING Lianyou, HE Chengbing, ZHANG Lingling, et al. Iterative block decision feedback equalizer with soft detection for underwater acoustic channels[J]. Journal of Electronics &Information Technology, 2016, 38(4): 885–891. doi: 10.11999/JEIT150669
    YANG T C. Correlation-based decision-feedback equalizer for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2005, 30(4): 865–880. doi: 10.1109/JOE.2005.862126
    STOJANOVIC M, CATIPOVIC J, and PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1621–1631. doi: 10.1121/1.408135
    QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  978
  • HTML全文浏览量:  306
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-12-07
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回