高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无人机集群安全高效的分区集结控制策略

赵太飞 宫春杰 张港 张爽

赵太飞, 宫春杰, 张港, 张爽. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181-2188. doi: 10.11999/JEIT200601
引用本文: 赵太飞, 宫春杰, 张港, 张爽. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181-2188. doi: 10.11999/JEIT200601
Taifei ZHAO, Chunjie GONG, Gang ZHANG, Shuang ZHANG. A Safe and High Efficiency Control Strategy of Unmanned Aerial Vehicles Partition Rendezvous[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2181-2188. doi: 10.11999/JEIT200601
Citation: Taifei ZHAO, Chunjie GONG, Gang ZHANG, Shuang ZHANG. A Safe and High Efficiency Control Strategy of Unmanned Aerial Vehicles Partition Rendezvous[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2181-2188. doi: 10.11999/JEIT200601

一种无人机集群安全高效的分区集结控制策略

doi: 10.11999/JEIT200601
基金项目: 国家自然科学基金(61971345),陕西省教育厅科研计划项目(17-JF024),西安市碑林区科技计划项目(GX1921),西安市科学计划项目(CXY1835(4)),榆林市科技计划项目(2019-145)
详细信息
    作者简介:

    赵太飞:男,1978年生,教授,研究方向为通信网络、无线光通信技术、无人机集群协作技术

    宫春杰:女,1995年生,硕士生,研究方向为紫外光通信、无人机集群集结与防碰撞

    张港:男,1997年生,硕士生,研究方向为紫外光通信、无人机集群编队控制与算法

    张爽:女,1983年生,讲师,研究方向为通信网络、机器学习

    通讯作者:

    赵太飞 tfz@xaut.edu.cn

  • 中图分类号: V279+.2; TP391.9

A Safe and High Efficiency Control Strategy of Unmanned Aerial Vehicles Partition Rendezvous

Funds: The National Natural Science Foundation of China (61971345), The Scientific Research Project of Shaanxi Provincial Department of Education (17-JF024), The Science and Technology Plan Project of Xi’an Beilin Area (GX1921), Xi’an Science Project (CXY1835(4)), The Science and Technology Plan Project of Yulin (2019-145)
  • 摘要: 针对无人机集群在特定场景下需要在指定区域安全、快速集结成指定队形的需求,该文提出了一种分区集结的控制策略。考虑无人机(UAV)的初始分布位置、集结区域以及编队图案等约束,为每架UAV分配目标集结点并使总航程尽量小。将近集结点区域等分为多个分区,不同分区内的UAV均按一定规则依次沿直线向所分配目标集结点航行,无多余航路能耗且互不影响。UAV间通过紫外光进行稳定的机间通信并共享已知信息实现集群内部信息共享。实验结果表明:随着分区数的增多,集群的集结时间呈阶梯型下降,阶梯高度与各分区所含UAV数目的最大值呈近似线性关系,预测碰撞概率逐渐降低接近于0,验证了所提方法的可行性和有效性。另外,根据实验结果得出的规律提出了一种依据不同需求选择最佳分区数的方法。
  • 图  1  分区方式示意图

    图  2  无人机周围由紫外光划分的不同区域

    图  3  3架无人机的航行轨迹

    图  4  近集结点区域

    图  5  集结时间与分区数的关系

    图  6  集结时间与分区内无人机数目最大值的关系

    图  7  平均集结时间与分区数的关系

    图  8  触发避碰措施次数与分区数的关系

    图  9  预测碰撞概率与分区数的关系

    图  10  初始速度方差与分区数的关系

    图  11  初始位置方差与分区数的关系

    图  12  最佳分区数选择

  • [1] 朱华勇, 张庆杰, 沈林成. 提高无人作战飞机协同作战能力的关键技术[J]. 控制工程, 2010, 17(S1): 52–55. doi: 10.14107/j.cnki.kzgc.2010.s1.005

    ZHU Huayong, ZHANG Qingjie, and SHEN Lincheng. Technologies for promoting cooperatively combat capability of UCAV[J]. Control Engineering of China, 2010, 17(S1): 52–55. doi: 10.14107/j.cnki.kzgc.2010.s1.005
    [2] 尹欣繁, 章贵川, 彭先敏, 等. 军用无人机技术智能化发展及应用[J]. 国防科技, 2018, 39(5): 30–34. doi: 10.13943/j.issn1671-4547.2018.05.06

    YIN Xinfan, ZHANG Guichuan, PENG Xianmin, et al. Intelligent development and application of military UAV technology[J]. Defense Technology Review, 2018, 39(5): 30–34. doi: 10.13943/j.issn1671-4547.2018.05.06
    [3] 吴应斌. 多旋翼无人机在人防指挥通信中的应用[J]. 信息与电脑, 2019, 31(17): 181–182.

    WU Yingbin. Application of multi-rotor UAV in civil air defense command communication[J]. China Computer &Communication, 2019, 31(17): 181–182.
    [4] 张晋武. 无人机编队飞行技术研究[J]. 舰船电子工程, 2015, 35(8): 9–12. doi: 10.3969/j.issn1672-9730.2015.08.003

    ZHANG Jinwu. Technology of unmaned aerial vehicles (UAVs) formation flight[J]. Ship Electronic Engineering, 2015, 35(8): 9–12. doi: 10.3969/j.issn1672-9730.2015.08.003
    [5] 赵太飞, 许杉, 屈瑶, 等. 基于无线紫外光隐秘通信的侦察无人机蜂群分簇算法[J]. 电子与信息学报, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491

    ZHAO Taifei, XU Shan, QU Yao, et al. Cluster-based algorithm of reconnaissance uav swarm based on wireless ultraviolet secret communication[J]. Journal of Electronics &Information Technology, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491
    [6] 胡立群, 陈敦军, 张开骁. 基于单片机的可见光及紫外光强探测系统[J]. 电子设计工程, 2013, 21(24): 81–83, 86. doi: 10.3969/j.issn.1674-6236.2013.24.026

    HU Liqun, CHEN Dunjun, and ZHANG Kaixiao. The visible light and UV-light detection system based on microprocessor[J]. Electronic Design Engineering, 2013, 21(24): 81–83, 86. doi: 10.3969/j.issn.1674-6236.2013.24.026
    [7] REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25–34. doi: 10.1145/37401.37406
    [8] DANIEL K, ROHDE S, GODDEMEIER N, et al. A communication aware steering strategy avoiding self-separation of flying robot swarms[C]. The 5th IEEE International Conference Intelligent Systems, London, UK, 2010: 254–259. doi: 10.1109/IS.2010.5548367.
    [9] GAZI V and PASSINO K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control, 2003, 48(4): 692–697. doi: 10.1109/TAC.2003.809765
    [10] OLFATI-SABER R and MURRAY R M. Distributed cooperative control of multiple vehicle formations using structural potential functions[J]. IFAC Proceedings Volumes, 2002, 35(1): 495–500. doi: 10.3182/20020721-6-ES-1901.00244
    [11] EASTHOPE P F. Tracking simulated UAV swarms using particle filters[C]. IET Conference on Data Fusion & Target Tracking 2014: Algorithms and Applications, Liverpool, UK, 2014, doi: 10.1049/cp.2014.0524.
    [12] 朱旭, 张逊逊, 尤谨语, 等. 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报, 2015, 36(12): 3919–3929. doi: 10.7527/S1000-6893.2015.0165

    ZHU Xu, ZHANG Xunxun, YOU Jinyu, et al. Swarm control of UAV close formation based on information consensus[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3919–3929. doi: 10.7527/S1000-6893.2015.0165
    [13] ALEJO D, COBANO J A, HEREDIA G, et al. Collision-free 4D trajectory planning in unmanned aerial vehicles for assembly and structure construction[J]. Journal of Intelligent and Robotic Systems, 2014, 73(1/4): 783–795. doi: 10.1007/s10846-013-9948-x
    [14] 倪良巧, 王道波, 蒋婉玥. 时间协同多无人机编队航迹规划[J]. 机械与电子, 2016, 34(2): 7–11. doi: 10.3969/j.issn.1001-2257.2016.02.002

    NI Liangqiao, WANG Daobo, and JIANG Wanyue. Multi UAV route planning based on time collaboration[J]. Machinery &Electronics, 2016, 34(2): 7–11. doi: 10.3969/j.issn.1001-2257.2016.02.002
    [15] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738.

    JIA Yongnan, TIAN Siying, and LI Qing. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738.
    [16] MILLIS J. Brownian movements and molecular reality[J]. Science, 1911, 33(846): 426–427. doi: 10.1126/science.33.846.426
    [17] DESAI J P, OSTROWSKI J, and KUMAR V. Controlling formations of multiple mobile robots[C]. 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998: 2864–2869. doi: 10.1109/ROBOT.1998.680621.
    [18] 朱旭. 基于信息一致性的多无人机编队控制方法研究[D]. [博士论文], 西北工业大学, 2014.

    ZHU Xu. Research on Multi-UAV formation control based on information consensus[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2014.
    [19] GAO Pu, LIUA H P, and GLUCH D P. On modelling, simulating and verifying a decentralized mission control algorithm for a fleet of collaborative UAVs[J]. Procedia Computer Science, 2012, 9: 792–801. doi: 10.1016/j.procs.2012.04.085
    [20] 黄元秋, 王晶. 图的交叉数综述[J]. 华东师范大学学报(自然科学版), 2010(3): 68–80. doi: 10.3969/j.issn.1000-5641.2010.03.008

    HUANG Yuanqiu and WANG Jing. Survey of the crossing number of graphs[J]. Journal of East China Normal University (Natural Science), 2010(3): 68–80. doi: 10.3969/j.issn.1000-5641.2010.03.008
    [21] 常庭懋, 韩中庚. 用“匈牙利算法”求解一类最优化问题[J]. 信息工程大学学报, 2004, 5(1): 60–62. doi: 10.3969/j.issn.1671-0673.2004.01.019

    CHANG Tingmao and HAN Zhonggeng. Solution to a class optimization problem by utilizing the “Hungary calculate way”[J]. Journal of Information Engineering University, 2004, 5(1): 60–62. doi: 10.3969/j.issn.1671-0673.2004.01.019
    [22] LA COUR-HARBO A, and SCHIØLER H. Probability of low-altitude midair collision between general aviation and unmanned aircraft[J]. Risk Analysis, 2019, 39(11): 2499–2513. doi: 10.1111/risa.13368
  • 加载中
图(12)
计量
  • 文章访问数:  1137
  • HTML全文浏览量:  529
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-12-08
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回