高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法

张雄 杨琳琳 上官宏 韩泽芳 韩兴隆 王安红 崔学英

张雄, 杨琳琳, 上官宏, 韩泽芳, 韩兴隆, 王安红, 崔学英. 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法[J]. 电子与信息学报, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591
引用本文: 张雄, 杨琳琳, 上官宏, 韩泽芳, 韩兴隆, 王安红, 崔学英. 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法[J]. 电子与信息学报, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591
Xiong ZHANG, Linlin YANG, Hong SHANGGUAN, Zefang HAN, Xinglong HAN, Anhong WANG, Xueying CUI. A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591
Citation: Xiong ZHANG, Linlin YANG, Hong SHANGGUAN, Zefang HAN, Xinglong HAN, Anhong WANG, Xueying CUI. A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591

基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法

doi: 10.11999/JEIT200591
基金项目: 国家青年科学基金(62001321),山西省高等学校科技创新项目(2019L0642),山西省自然科学基金(201901D111261)
详细信息
    作者简介:

    张雄:男,1973年生,教授,硕士生导师,研究方向为模式识别、医学图像处理和视频目标跟踪

    杨琳琳:女,1992年生,硕士生,研究方向为医学图像处理

    上官宏:女,1988年生,副教授,硕士生导师,研究方向为模式识别、医学图像处理

    韩泽芳:女,1996年生,硕士生,研究方向为医学图像处理

    韩兴隆:男,1995年生,硕士生,研究方向为医学图像处理

    王安红:女,1972年生,教授,博士生导师,研究方向为图像视频编码

    崔学英:女,1978年生,副教授,硕士生导师,研究方向为图像处理与重建

    通讯作者:

    张雄 zx@tyust.edu.cn

  • 中图分类号: TN911.73; TP391

A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation

Funds: The Natural Science for Youth Foundation (62001321), The Scientific and Technological Innovation Programs of Higher Educations Institutions in Shanxi (2019L0642), The Natural Science Foundation of Shanxi Province (201901D111261)
  • 摘要: 生成对抗网络(GAN)用于低剂量CT(LDCT)图像降噪具有一定的性能优势,成为近年CT图像降噪领域新的研究热点。不同剂量的LDCT图像中噪声和伪影分布的强度发生变化时,GAN网络降噪性能不稳定,网络泛化能力较差。为了克服这一缺陷,该文首先设计了一个编解码结构的噪声水平估计子网,用于生成不同剂量LDCT图像对应的噪声图,并用原始输入图像与之相减来初步抑制噪声;其次,在主干降噪网络中,采用GAN框架,并将生成器设计为多路编码的U-Net结构,通过博弈对抗实现网络结构优化,进一步抑制CT图像噪声;最后,设计了多种损失函数来约束不同功能模块的参数优化,进一步保障了LDCT图像降噪网络的性能。实验结果表明,与目前流行算法相比,所提出的降噪网络能够在保留LDCT图像原有重要信息的基础上,取得较好的降噪效果。
  • 图  1  本文降噪网络整体框架

    图  2  参数选择对算法性能的影响

    图  3  4种降噪方法对腹部LDCT图像的降噪结果示意图(显示窗为[40,400]HU)

    图  4  4种降噪方法对胸部LDCT图像的降噪结果示意图(显示窗为[40,400]HU)

    图  5  4种降噪方法胸部LDCT降噪结果的伪影图与差值图(显示窗为[40,400]HU)

    图  6  4种方法在piglet数据集上对不同剂量LDCT图像的降噪结果(显示窗为[40,400]HU)

    图  7  图3所示降噪图像局部ROI的量化指标值

    图  8  不同算法所抑制的噪声伪影图与理想伪影图的均方误差值变化曲线

    表  1  图6所示降噪图像的定量比较

    150 mAs 75 mAs 30 mAs 15 mAs
    SSIMPSNR(dB)VIFSSIMPSNR(dB)VIFSSIMPSNR(dB)VIFSSIMPSNR(dB)VIF
    LDCT0.913532.43670.39120.882729.73930.30870.857228.45050.25610.823225.67760.1867
    BM3D0.934632.74010.48100.918130.63410.40620.899630.60950.35470.859527.83160.2616
    RED-CNN0.913731.11850.34780.894428.97830.29600.900330.41940.31130.893029.12180.2858
    pix2pix0.924432.78080.41300.908430.87960.35850.922432.91930.39860.911831.32730.3537
    本文方法0.948434.64590.50300.940832.66910.45800.945334.17370.47760.940333.16300.4457
    下载: 导出CSV

    表  2  网络结构消融对算法性能的影响

    子模块SSIMPSNR (dB)
    多路卷积噪声水平
    估计子网
    w/o多路卷积0.868430.3736
    w/o噪声水平估计子网0.869631.0011
    本文方法0.873231.2266
    下载: 导出CSV

    表  3  不同算法的测试时间对比

    算法BM3DRED-CNNpix2pix本文方法
    测试时间(s/张)1.20788.69000.07100.1085
    下载: 导出CSV
  • [1] 张权. 低剂量X线CT重建若干问题研究[D]. [博士论文], 东南大学, 2015.

    ZHANG Quan. A study on some problems in image reconstruction for low-dose CT system[D]. [Ph. D. dissertation], Southeast University, 2015.
    [2] HSIEH J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances[M]. Bellingham, USA: SPIE Press, 2009.
    [3] BRENNER D J and HALL E J. Computed tomography-an increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277–2284. doi: 10.1056/NEJMra072149
    [4] NAIDICH D P, MARSHALL C H, GRIBBIN C, et al. Low-dose CT of the lungs: Preliminary observations[J]. Radiology, 1990, 175(3): 729–731. doi: 10.1148/radiology.175.3.2343122
    [5] CHEN Hu, ZHANG Yi, ZHANG Weihua, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679–694. doi: 10.1364/BOE.8.000679
    [6] SHAN Hongming, ZHANG Yi, YANG Qingsong, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522–1534. doi: 10.1109/TMI.2018.2832217
    [7] CHEN Hu, ZHANG Yi, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524–2535. doi: 10.1109/TMI.2017.2715284
    [8] WU Dufan, KIM K, FAKHRI G E, et al. A cascaded convolutional neural network for X-ray low-dose CT image denoising[EB/OL]. https://arxiv.org/abs/1705.04267, 2017.
    [9] WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536–2545. doi: 10.1109/TMI.2017.2708987
    [10] YANG Qingsong, YAN Pingkun, ZHANG Yanbo, et al. Low-Dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348–1357. doi: 10.1109/TMI.2018.2827462
    [11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th Conference and Workshop on Neural Information Processing Systems (NIPS), Cambridge, United States, 2014: 2672–2680.
    [12] BAO Jianmin, CHEN Dong, WEN Fang, et al. CVAE-GAN: Fine-grained image generation through asymmetric training[C]. The IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2745–2754.
    [13] ZHENG Jin, MA Haocheng, and PENG Lihui. A CNN-based image reconstruction for electrical capacitance tomography[C]. 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 2019: 1–6. doi: 10.1109/IST48021.2019.9010096.
    [14] ZHANG Zhijun and JI Xiaopeng. GAN network solves the problem of image segmentation across data[C]. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 2019. doi: 10.1109/iaeac47372.2019.8998056.
    [15] KIM D W, CHUNG J R, and JUNG S W. GRDN: Grouped residual dense network for real image denoising and GAN-based real-world noise modeling[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, USA, 2019.
    [16] HE Zhang, VISHWANATH S, and VISHAL M P. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943–3956. doi: 10.1109/TCSVT.2019.2920407
    [17] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1125–1134.
    [18] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891
    [19] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9.
    [20] AAPM. Low dose CT grand challenge[EB/OL]. http://www.aapm.org/GrandChallenge/LowDoseCT/, 2017.
    [21] Piglet Dataset[EB/OL]. http://homepage.usask.ca/~xiy525/.
    [22] DIEDERK P K and JIMMY L B. Adam: A method for stochastic optimization[C]. International Conference on Learning Representations (ICLR), Ithaca, USA, 2015.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2488
  • HTML全文浏览量:  1302
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-17
  • 修回日期:  2021-02-03
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回